Calcium binding to the purple membrane: A molecular dynamics study

Tsjaerk A. Wassenaar,1 Xavier Daura,2 Esteve Padró’s,3 and Alan E. Mark1,4*

1 Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
2 Catalan Institution for Research and Advanced Studies (ICREA) and Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
3 Unitat de Biofísica, Departamento de Bioquímica i de Biologia Molecular, Facultat de Medicina and Centre d’Estudis en Biofísica, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
4 School of Molecular and Microbial Sciences and the Institute of Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia

ABSTRACT

The purple membrane (PM) is a specialized membrane patch found in halophilic archaea, containing the photoreceptor bacteriorhodopsin (bR). It is long known that calcium ions bind to the PM, but their position and role remain elusive to date. Molecular dynamics simulations in conjunction with a highly detailed model of the PM have been used to investigate the stability of calcium ions placed at three proposed cation binding sites within bR, one near the Schiff base, one in the region of the proton release group, and one near Glu9. The simulations suggest that, of the sites investigated, the binding of calcium ions was most likely at the proton release group. Binding in the region of the Schiff base, while possible, was associated with significant changes in local geometry. Calcium ions placed near Glu9 in the interior of bR (simultaneously to a Ca2+ near the Schiff base and another one near the Glu194–Glu204 site) were not stable. The results obtained are discussed in relation to recent experimental observations and theoretical considerations.

INTRODUCTION

Bacteriorhodopsin (bR) is a light harvesting protein found in certain species of halophilic archaea. bR absorbs green light (500–650 nm, maximum absorbance 568 nm), giving rise to an intense purple color that can cause the salt lakes and pools where the archaea are found to appear purple. bR is localized within specific patches on the cell surface, called the purple membrane (PM). The PM is a two-dimensional crystal with an almost perfect hexagonal lattice and a high protein to lipid ratio. bR is the sole protein found in the PM, which also has a lipid composition that is distinct from the rest of the archaeal membrane. The PM and bR have been the focus of intense study since first isolated in 1970.1 This is primarily because, as a member of the seven transmembrane helical (7TM) protein superfamily, bR is closely related to G-protein coupled receptors, many of which are important targets for pharmaceutical intervention. This together with the ease with which large quantities of protein can be obtained, means that bR is widely used as a model for the understanding of sensing and signaling by 7TM receptors.

Functional bR consists of a protein, bacterioopsin, and a chromophore, retinal, which are covalently linked via the formation of a Schiff base between retinal and Lys216. On absorption of green light the chromophore isomerizes from an all-trans configuration to a 13,14-cis configuration. This initiates a series of deprotonation–protonation events, resulting in the effective translocation of a proton from the intracellular matrix to the exterior of the cell. In this way, the action of light on bR results in the establishment of a proton gradient across the membrane, which is in turn used to drive ATP-synthesis. A longstanding question regarding bR and the PM is the location and role of divalent cations. It is well established that under physiological conditions, a number of calcium and magnesium ions are bound to the PM,2–4 and that the presence of these cations is required to maintain the activity of the PM at low pH. Acidification of the PM2,5 results in a shift...
in the absorption spectrum \(\lambda_{\text{max}} \) of bR from 570 nm (purple) to 620 nm (blue) and coincides with a loss of proton pumping functionality. This has been ascribed to the protonation of Asp85,\(^{6-8} \) the key residue in the first of a series of proton transfer steps. The removal of membrane associated cations by chelation\(^2 \) or by deionization\(^2 \) results in a shift in this response by about 3 pH units\(^2 \) because of the increase of the p\(K_a \) of Asp85.

Several studies have suggested that the effect of cations is the result of nonspecific binding to the lipids of the PM, for example, by competing with associated protons and raising the p\(K_a \) of the lipid head groups, otherwise known as the Gouy-Chapman effect.\(^{9-12} \) The resulting change in the concentration of protons at the membrane surface would then account for the deprotonation of Asp85. Support for nonspecific binding comes from work such as that of Váró \(^{12} \) et al.,\(^{12} \) suggesting that cations bind with equal affinity to both the extracellular and intracellular membranes. However, it has been argued that the findings of Váró \(^{12} \) et al.,\(^{12} \) may result from the rapid equilibration of proton concentrations on both sides of the membrane,\(^{13} \) preventing the measurement of differences in the cytoplasmic and extracellular surface pH.\(^{14} \) In addition, it has been shown that the predictions from the Gouy-Chapman model do not correspond with experimental observations.\(^{15} \)

Other data suggest that divalent cations bind to specific locations in or around bR. For example, several groups have proposed that a location near Asp85 in the retinal pocket of bR is the critical cation binding site.\(^{4,16,17} \) The possibility of a binding site in this region is supported by a number of studies, including recent EXAFS/XANES results\(^{18-21} \) and would be consistent with results obtained from one- and two-photon spectroscopy.\(^{16,22} \) There is also much evidence against binding at such a location.\(^{23,24} \) For example, Fu \(^{23} \) et al.,\(^{23} \) showed that the purple color could be reconstituted even with large cations, which would not be expected to occupy a position in the region of the Schiff base. However, the most compelling evidence against the binding of cations in the interior of bR comes from the fact that in none of the high-resolution crystal structures it has been possible to definitely identify a cation bound in the vicinity of the chromophore. Some density is observed in the structure solved by Mitsuoka \(^{2AT9,25} \) et al.,\(^{2AT9,25} \) which the authors argued was associated with a positive charge. Although this structure was solved at a relatively low resolution, (3.0 Å) it does leave open the question of whether the crystallization procedure and/or conditions used to obtain the high resolution structures could have resulted in the loss of the associated cations.

In addition to the retinal binding pocket, a number of other potential binding sites on the extracellular side of bR have been proposed. Among the sites suggested are a position directly associated with the proton release group, formed by Glu194 and Glu204, and a site in the vicinity of Glu9, which is connected to the proton release group by a network of water molecules.\(^{21,26} \) Still, others have proposed that the most likely specific binding sites are on the protein–lipid interface, rather than in the interior of the protein. Results obtained using electron paramagnetic resonance (EPR) suggest that a high-affinity binding site was located at a distance of 9.8 ± 0.7 Å of Glu74.\(^{14} \) This finding is consistent with results obtained from \(^{13} \)C NMR,\(^{27} \) which pointed to a location at the protein–lipid interface in the region between helices F and G, close to Ala196.

Here, we present the results of molecular dynamics simulations designed to investigate whether calcium ions could bind at any of the proposed interior positions. Over the past decade, many molecular dynamics simulations and quantum mechanical studies of bR have been performed. These have focused primarily on the role of internal water molecules,\(^{28-30} \) retinal isomerization,\(^{31} \) and the initial stages in proton translocation.\(^{32-35} \) The models used for these studies have included isolated bR molecules,\(^{21,36} \) single bR molecules in an argon slab,\(^{37} \) or in a DMPC bilayer,\(^{38} \) bR trimers immersed in a bilayer of POPC lipids,\(^{28,29} \) and a single bR molecule in a disc of DPPC lipids, surrounded by truncated lipoproteins.\(^{39} \) For the current work, the use of a complete model including the characteristic lipids was essential. The system constructed for this study resembles the near complete model of the PM used by Baudry \(^{30} \) et al.\(^{30} \) The primary difference is that in the current work, the nature and position of the lipids has been based where possible on experimental data\(^{40-42} \) and that the system simulated consisted of three bR trimers to minimize possible artifacts because of periodicity.

The binding of calcium ions at three putative binding sites has been investigated. The sites include the Schiff base region, as proposed by Jonas and Ebrey,\(^{6} \) Stuart \(^{16} \) et al.,\(^{16} \) Pardo \(^{17} \) et al.,\(^{17} \) and Sepulcre \(^{18,21} \) et al.,\(^{18,21} \) the proton release group, as suggested by Sepulcre \(^{21} \) et al.,\(^{21} \) and Sanz \(^{26} \) et al.,\(^{26} \) and a site in the interior of bR near Glu9 as proposed by the same group. These sites are the locations in the interior of bR. The primary aim was to investigate if a calcium ion could be accommodated at the sites proposed without major disruption of the local geometry. The results are discussed in terms of the stability and the relationship between the configurations obtained in the simulations and the available crystal structures. Finally, the findings are discussed in relation to a range of experimental observations and theoretical considerations.

METHODS

The simulation model

Construction of the model

The construction of the model largely followed the approach taken by Baudry \(^{30} \) et al.\(^{30} \) The primary improvements over this earlier model relate to the type and place-
ment of the lipids. The basic hexagonal unit cell is shown in Figure 1(A). This unit, which contains a bR trimer and its associated lipids, was constructed using information from three different crystal structures, namely, 1BRR—a bR trimer, resolved to 2.9 Å resolution; 1QHJ—a bR monomer, resolved to 1.9 Å resolution; and 1C3W—a bR monomer, resolved to 1.55 Å resolution.

The structure of the bR trimer (1BRR) formed the basis of the model. The three bR units of this structure have a number of structural differences. In particular, coordinates are not available for a number of atoms and residues. The missing side chain atoms of a number of residues (residues 3, 225, 227, 229, 230, and 232 of chain A, residues 3, 4, 227, and 232 of chain B, and residues 1, 227, 229, 230, and 232 of chain C) were modeled using the SwissPDB Viewer. The first two residues of the N-termini of chains A and B are not resolved in the crystal structure were modeled, based on the configuration of these residues in chain C. The N-terminal glutamine group was modeled as pyroglutamic acid. As the C-termini were not resolved for any of the chains, residues after Glu232 were omitted from the system.

The protonation states of titratable residues were chosen according to their normal protonation states at pH 7.0 except for Asp96 and Asp115, which were protonated as appropriate for bR in the ground state. In two of the simulations the proton release group was also protonated, in order to mimic the effect of a protonated water cluster.

Lipid composition

Despite several studies by different groups, the exact lipid composition of the PM is still uncertain. The main constituents are known to be PGP (-Me), S-TGA-1 (sulphated triglycosyl dihytanlyglycerol), and squalene, but the precise ratio of each of these compounds to bR is debated. Neutron diffraction experiments support that there being two glycolipid S-TGA-1 molecules per unit bR one in the intratrimer space and one in the intertrimer space. S-TGA-1, a glycolipid, contains three sugar moieties linked to an archeol group. These sugar groups are in order from the archeol: 1,2-α-D-glucose, 1,6-α-D-mannose, and 1-β-D-galactose-3-sulfate. The head groups of the intratrimer glycolipids are resolved in the structure 1BRR. The glycolipid in the intertrimer space corresponds to the dihytanoyl chain numbered 501 in the structure 1QHJ. The head group of the intratrimer S-TGA-1 unit was modeled onto this lipid tail, avoiding van der Waals contacts with either neighboring lipids or the protein.

The S-TGA-1 molecules account for two of the lipids that are resolved in the crystal structures. The other phytanoyl lipids that are resolved in the crystal structures were assigned to be PGP-Me. A total of seven PGP-Me molecules per unit bR were added to the system, six of which were placed based on the positions of the dihytanoyl-glycerol tails (502–507) resolved in the structure 1QHJ. Three additional PGP-Me moieties (one for each BR unit) were added in the intratrimer region on the intracellular side. The PGP-Me head group was modeled using the PRODRG server. The head group of each of the dihytanoyl-glycerol chains was modeled so as to maximize the space between neighboring head groups and to avoid van der Waals contacts with either neighboring lipids or the protein.
The conformation and position of the third lipid constituent, squalene, was taken from structure 1C3W. In 1C3W, the squalene molecule lies in an S-like conformation close to the side of bR. The side chain methyl groups which are not resolved in the structure were modeled based on standard geometries.

Bound waters

A network of water molecules within bR, which is believed to be involved in proton translocation, is resolved in several of the crystal structures. As the positions of the crystal waters in the structure 1C3W coincide with the positions predicted based on free energy perturbation calculations, the crystal waters as observed in this structure were incorporated into the model.

Lattice vectors

The PM is a quasi two-dimensional crystalline system, in which each hexagonal unit cell contains three bR molecules together with their associated lipid molecules. In the simulations, the system was also treated as a two-dimensional lattice. As shown in Figure 1(B,C), the final system consisted of three hexagonal cells containing a total of nine bR molecules. The system was also periodic in the direction perpendicular to the plane membrane. The initial distance between adjacent layers was 7.6 nm, which was sufficient to ensure that the layers did not interact directly, and the solvent between the layers showed bulk-like behavior. Three unit cells were simulated in order to reduce the effect of the periodic boundary conditions within the plane of the membrane and to provide greater statistics. We note that, in addition to being more realistic, it is computationally more efficient to simulate a fully periodic PM, than to simulate either an isolated monomer or trimer of bR in a lipid bilayer.

Solvent

The space between the membrane layers was filled with water. As the electronic properties of bR as well as the stability and dynamics of the PM itself are dependent on the ionic strength of the environment, sufficient sodium and chloride ions were added to give a salt concentration of ~3.3M, conditions under which the PM is known to be stable.

Force field parameters

The protein was described using the GROMOS96 43a2 united atom force field. Parameters for retinal and the Schiff base Lys216 were taken from Kandt et al. Parameters for squalene, the lipid tails, the head group of phospholipids described within the GROMOS96 43a2 force field. Parameters for the carbohydrate moieties of S-TGA-1 were based on the parameters derived for the GROMOS96 45a3 force field, which are fully compatible with the 43a2 force field (Roberto Lins, personal communication). The building blocks for 1,4-α-D-glucose and 1,4-β-D-glucose from this force field were adapted to form the corresponding 1,2-α-D-glucose, 1,6-α-D-mannose, and 1,3-β-D-galactose. Water molecules were described using the Simple Point Charge (SPC) model.

The complete description of the solvated PM, including the structure file containing nine bR molecules and the associated lipids, as well as the topology files, are available as supplementary material. The structure file contains ~52k atoms in total.

Simulations

General

All simulations were performed using the Gromacs package version 3.1.4. Nonbonded interactions were evaluated using a twin range cutoff of 0.9 and 1.4 nm together with a reaction field (RF) correction to correct for the neglect of electrostatic interactions beyond the longer range cutoff (eRF = 78.0). Interactions within the shorter range cutoff were evaluated at every step, whereas interactions within the longer range cutoff were evaluated every 10 steps. These parameters correspond to the conditions under which the force-field parameters were derived. The temperature was maintained at 300 K by applying a Berendsen thermostat. The protein/membrane and solvent were coupled independently to the heat bath with a coupling time of 0.1 ps. The pressure was weakly coupled to a reference pressure of 1 bar using an anisotropic Berendsen barostat with a coupling time of 1.0 ps and a compressibility of 4.6×10^{-5} bar^{-1}. The time step used for integration of the equations of motion was 0.002 ps. The bond lengths and angle of the water molecules were constrained using the SETTLE algorithm. Bond lengths within the proteins and lipids were constrained using the SHAKE algorithm.

Calcium ions positioned at putative binding sites

The simulations performed are listed in Table I. In system 1, a single calcium ion was placed in the interior of each bR unit near the Schiff base (P1) between Asp85 and Asp212. In system 2, a single calcium ion was placed in the region of the proton release group between Glu194 and Glu204. Both Glu194 and Glu204 were deprotonated. In system 3, three calcium ions per bR unit were added, one near Asp85 (P1), one near the proton release group Glu194/Glu204 (P2), and one next to Glu9 (P3). In this case, Glu 194 in the proton release group was protonated. System 4 was identical to system 3, except that Glu 194 was deprotonated (as in system 2). Note that the calcium ions were placed such that the overlap with the surrounding atoms was minimized.
After the calcium ions were added, each system was first energy minimized, and then simulated for 10 ps with position restraints on all heavy atoms within bR to relax the system. After a further 10 ps of simulation without restraints, the 20 ns production runs were performed.

Analysis

Comparison with crystal structures

The simulation results were compared to the available crystal structures (PDB entries 1Ds 1AP9,64,65 1AT9,66 1BRR,45 1BRX,67 1C3W,47 1FBB,68 1IW6,69 1KGB,70 1ML0,71 1PY6,72 1QHJ,46 1QM8,73 1XJI,74 2AT9,25 and 2BRD75). Note that the structure 1AP9 used in this work has been corrected for 18% twinning in the crystals.65 The comparison focused on the local geometry in the vicinity of the proposed calcium binding sites P1, P2, and P3, as expressed in a set of distances between key residues. To illustrate the results, a representative structure was extracted from each simulation. This structure for which the sum of the square of the deviations of the elements of the corresponding distance matrix to the average matrix was a minimum (i.e., the structure closest to the average overall) was taken as a representative structure. To verify that the results obtained using the representative structures reflected the results of the simulations, overall the analysis was repeated using an ensemble of structures extracted from the trajectories. The results of this analysis are presented as supplementary data.

Bond valence sums

To help quantify the coordination state of the calcium ion and to provide a measure of the interaction of each calcium ion with its surroundings, an apparent bond valence contribution was calculated for each oxygen atom lying within 0.5 nm of the calcium ion. By summing the individual contributions, an overall bond valence sum could then be determined for each calcium ion. The bond valence sum traces back to the work of Pauling76 and has previously been used to investigate calcium binding in proteins77 and for analysis of the interactions between Na⁺ and a protein in molecular dynamics simulations.78 The method uses the empirical relationship between the cation–ligand distance and the bond order, such that it can be used to assess the quality or ‘fitness’ of binding of a cation at a certain position in a protein: a

Table I

An Overview of the Simulations Performed

<table>
<thead>
<tr>
<th>System</th>
<th>Description</th>
<th>Remarks</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calcium ion positioned at P1</td>
<td>Glu 194 protonated</td>
<td>20 ns</td>
</tr>
<tr>
<td>2</td>
<td>Calcium ion positioned at P2</td>
<td>Glu 194 deprotonated</td>
<td>20 ns</td>
</tr>
<tr>
<td>3</td>
<td>Calcium ions positioned at P1, P2, and P3</td>
<td>Glu 194 deprotonated</td>
<td>20 ns</td>
</tr>
<tr>
<td>4</td>
<td>Calcium ions positioned at P1, P2, and P3</td>
<td>Glu 194 deprotonated</td>
<td>20 ns</td>
</tr>
</tbody>
</table>

Table II

Average Distances and Standard Deviations Between Calcium Ions and Selected Atom

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E9: OE*</td>
<td>1.39</td>
<td>0.12</td>
<td>0.90</td>
<td>0.22</td>
<td>1.52</td>
<td>0.22</td>
</tr>
<tr>
<td>Y57: OH</td>
<td>0.37</td>
<td>0.11</td>
<td>1.01</td>
<td>0.14</td>
<td>0.37</td>
<td>0.10</td>
</tr>
<tr>
<td>R82: NZ</td>
<td>0.88</td>
<td>0.09</td>
<td>0.75</td>
<td>0.11</td>
<td>0.96</td>
<td>0.12</td>
</tr>
<tr>
<td>D85: OD*</td>
<td>0.31</td>
<td>0.04</td>
<td>1.32</td>
<td>0.11</td>
<td>0.30</td>
<td>0.02</td>
</tr>
<tr>
<td>Y157: OH</td>
<td>0.43</td>
<td>0.10</td>
<td>1.21</td>
<td>0.16</td>
<td>0.45</td>
<td>0.04</td>
</tr>
<tr>
<td>E194: OE*</td>
<td>1.07</td>
<td>0.13</td>
<td>0.31</td>
<td>0.06</td>
<td>1.41</td>
<td>0.22</td>
</tr>
<tr>
<td>E204: OE*</td>
<td>1.12</td>
<td>0.09</td>
<td>0.30</td>
<td>0.04</td>
<td>1.16</td>
<td>0.09</td>
</tr>
<tr>
<td>D212: OD*</td>
<td>0.29</td>
<td>0.02</td>
<td>1.14</td>
<td>0.10</td>
<td>0.29</td>
<td>0.01</td>
</tr>
<tr>
<td>K216: NZ</td>
<td>0.47</td>
<td>0.02</td>
<td>1.42</td>
<td>0.08</td>
<td>0.46</td>
<td>0.01</td>
</tr>
<tr>
<td>K216: HZ</td>
<td>0.38</td>
<td>0.03</td>
<td>1.36</td>
<td>0.09</td>
<td>0.37</td>
<td>0.02</td>
</tr>
</tbody>
</table>

All units are in nm. Distances are given in boldface and standard deviations are given in normal font.
suitable binding site will, among others, allow neutralization of the charge of a cation present, thus yielding a bond–valence sum close to the charge of the cation. The bond valence contributions and sums were calculated according to the method of Brown and Shannon and parameters for calcium–oxygen bonds given by Brown and Wu. The relation between the bond valence and the calcium–oxygen distance is given by

$$s = \left(\frac{r}{r_1} \right)^{-N}$$

where \(r_1\) is the distance between the two atoms corresponding to unit valence. The parameters used for \(r_1\) and \(N\) are 0.1909 nm and 5.4, respectively. Note that in this case, the calculated bond valence sums primarily reflect the empirically derived nonbonded interaction terms within the force field and should be treated only as a relative measure. In reality, the interaction between the calcium ions and the ligating oxygen atoms will have partial bonding character, which in principle must be described quantum mechanically.

RESULTS

System stability

The placement of different numbers of calcium ions within each bR molecule had little effect on the structure of the bR molecules within the PM. In all cases, the system appeared to be stable on the time scale simulated. The total potential energy stabilized close to its final value within 1 ns. The change in the potential energy was associated with a decrease in the volume of the unit cell from an initial value of \(\sim 730\) nm\(^3\) to a value of \(\sim 688\) nm\(^3\) (\(-5.8\%\)). The average backbone RMSD of the starting structure was lowest in system 1 (0.15 nm). In the other simulations, all of which contained a calcium ion in the Schiff base region, the average RMSD of the backbone was slightly higher ranging from 0.17 nm for system 1 with just a single calcium ion in the region of the Schiff base to 0.2 nm for the simulations with calcium ions placed at P1, P2, and P3. The RMSD plots for the different systems are provided as supplementary material.

Binding of divalent ions: placement of calcium at putative binding sites

The results of the simulations in which calcium ions were placed at the putative binding sites, P1, P2, and P3, are summarized in Tables II and III and Figures 2–5. Table II presents the distances between the calcium ions and a number of selected atoms of key residues, flanking the putative binding sites. Table III presents the results from the analysis of bond valence. Figures 2–5 show the distribution of calcium ions inside bR for the simulations of systems 1–4, respectively, together with a representative structure from the simulation of each system overlaid on the geometry of key residues (notably Tyr57, Arg82, Asp85, Glu194, Glu204, Asp212, and Lys216) in different crystal structures. In addition, in Figures 2 and 3 the distributions of oxygen atoms around the calcium ions for the duration of the simulations of systems 1 and 2 are shown.

Calcium positioned in the Schiff base region (P1)

Considering the simulations of systems 1, 3, and 4 together, there are 27 separate cases in which a calcium ion was positioned within a bR molecule at the site P1, that is, near the Schiff base between Asp85 and Asp212. Figure 2(A), shows the range of positions occupied by the calcium ion with respect to the protein for all copies of bR in the 20 ns simulation of system 1. The ion placed initially in between Asp85 and Asp212 rapidly migrated to a position just above Asp 85 and Asp212 [residues a and b in Fig. 2(A)]. After the initial relaxation the position of the ion remains stable. As can be seen in Figure 2(A), the ion shows a very narrow distribution of positions in all 9 copies. The results obtained in the simulations of systems 3 (Fig. 4) and 4 (Fig. 5) are very similar.

In Figure 2(B), the positions of the oxygen atoms to which the ion is coordinated, occupied during the simulation, are shown for system 1. The coordination of the

Table III

Average Valence Sum Contributions of Selected Ligands and the Total Valence Sums of Calcium

<table>
<thead>
<tr>
<th>Calcium ion (system:position)</th>
<th>1:P1</th>
<th>2:P2</th>
<th>3:P1</th>
<th>3:P2</th>
<th>4:P1</th>
<th>4:P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y57: OH</td>
<td>0.11</td>
<td>0.12</td>
<td>0.10</td>
<td>0.12</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>D85: OD*</td>
<td>0.31</td>
<td>0.14</td>
<td>0.33</td>
<td>0.12</td>
<td>0.39</td>
<td>0.07</td>
</tr>
<tr>
<td>Y185: OH</td>
<td>0.04</td>
<td>0.08</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>E194: OE*</td>
<td>0.32</td>
<td>0.07</td>
<td>0.00</td>
<td>0.03</td>
<td>0.25</td>
<td>0.19</td>
</tr>
<tr>
<td>E194: OE</td>
<td>0.34</td>
<td>0.06</td>
<td>0.26</td>
<td>0.19</td>
<td>0.38</td>
<td>0.07</td>
</tr>
<tr>
<td>D212: OD*</td>
<td>0.33</td>
<td>0.11</td>
<td>0.34</td>
<td>0.09</td>
<td>0.35</td>
<td>0.10</td>
</tr>
<tr>
<td>HOH*: O</td>
<td>0.93</td>
<td>0.14</td>
<td>0.97</td>
<td>0.27</td>
<td>0.98</td>
<td>0.18</td>
</tr>
<tr>
<td>Total</td>
<td>1.88</td>
<td>0.10</td>
<td>1.90</td>
<td>0.11</td>
<td>1.89</td>
<td>0.10</td>
</tr>
</tbody>
</table>

The totals include small contributions from residues in addition to those listed.
calcium ion was primarily eightfold involving two aspartic acids, Asp85 and Asp212, the hydroxyl group of Tyr57, and three water molecules. The average valence sum of the calcium ion at P1 in system 1 (shown in orange). Alternative crystal structures 1QHJ (42) (gray), 1AP964,65 (green), and 2AT925 (blue) are shown for comparison. The letters identify to the highlighted residues a. Asp85, b. Asp212, c. Tyr57, d. Arg82, e. Tyr83, f. Glu194, and g. Glu204. (B) The coordination of the calcium ion at P1. Amino acid ligands are labeled in magenta, water molecules in blue (arbitrary numbering).

For each system, a comparison was made between the local geometry of the Schiff base region and the proton release group and the geometry as observed in the crystal structures. To illustrate the differences and similarities between simulations and crystal structures, a single structure was extracted from the trajectories based on an analysis of the distances between selected atoms for a set of key residues listed in Table II. This structure is shown in orange in Figures 2–5. Note that, although a single structure cannot fully represent the ensemble of structures sampled during the simulation, qualitatively the same results were obtained when the distance distributions obtained from the trajectories were analyzed directly (see supplementary material). Comparing the representative structure for system 1 to the various crystal structures, several differences are evident. Asp85 (residue a) and Asp212 (residue b) are oriented more toward the calcium ion. A crystallographic water molecule, lying between Asp85 and the Schiff base is lost. There is a movement of Tyr57 (residue c) away from the calcium ion. The side chain of Arg82 (residue d) also moves to a slightly more exposed location with the guanidinium group interacting directly with the proton release group. Although significant, the deviations are not large. In
addition, we note that changes in the positions of Tyr83 (residue e) and Glu194 (residue f) with respect to the crystal are also evident, both becoming oriented more toward the retinal binding pocket in the simulation, even though they lie further from the position of the calcium.

In systems 3 and 4, in addition to the calcium ion at P1, a second ion is placed near the proton release group (P2). In this case, Tyr57 (residue c) maintains a position close to that observed in the crystal structures (see Figs. 4 and 5). However, the guanidinium group of Arg82 (residue d) orients toward E9, rather than toward the proton release group. In addition, Tyr83 (residue e) reorients, such that the hydroxyl group interacts directly with Glu194.

Calcium positioned in between Glu194/Glu204 (P2)

Considering the simulations of systems 2, 3, and 4 together, there are 27 separate cases in which a calcium ion was placed near the proton release group at the site P2 between Glu194/Glu204 in bR. In systems 2 and 4 Glu194 was deprotonated, whereas in system 3 Glu194 was protonated. In addition to the calcium at P2 in the systems 3 and 4, a calcium ion was also placed at P1 and at P3.

Figure 3 summarizes the results of the simulation of system 2, in which a single calcium ion was positioned between the proton release groups of each bR molecule. From Figure 3(A), which shows the distribution of the calcium ion with respect to the protein, it can be seen that the ion remains in a well-defined region. This is supported by the results in Table II, which shows the average and standard deviation of the distance between the calcium and each of a set of selected atoms. In all cases the standard deviation was 0.22 nm or less. The representative configuration, for system 2 [shown in orange in Fig. 3(A)], closely matches that observed in most crystal structures of ground state bR. The most notable differen-
ces are the reorientation of Asp85 (residue a) toward the Schiff base and a shift in the position of Arg82 (residue d). As observed for system 1, the water molecule positioned between Asp85 and the Schiff base in the crystal structures was lost. From Figure 3(B), it can be seen that the calcium ion is coordinated by the residues Glu194 and Glu204, which contribute 0.32 and 0.34 to the total valence sum, respectively (Table III). In addition, the calcium is coordinated by three water molecules, which together have a valence sum contribution of 0.97 (±0.27). On an average, the total valence sum for the calcium ion in system 2 was 1.90 (±0.11).

In the case of system 3, in which Glu194 was protonated, two out of the nine calcium ions placed at P2 escaped into the bulk solvent (Fig. 4). A further two moved to a position closer to Glu9. In only four of the nine cases did the ion remain close to the position, at which it was placed initially. Furthermore, in those cases where the ion did remain close to its initial position the local geometry of the protein became distorted. The fact

Figure 4
Structural changes associated with the placement of a calcium ion at the sites P1, P2 (Glu194 protonated), and P3 (near Glu9) in bR (system 3). The range of positions of the calcium ions sampled during the simulation projected onto a representative structure for system 3 together with alternate crystal structures. Labels and colors are as in Figure 2.

Figure 5
Structural changes associated with the placement of a calcium ion at the sites P1, P2 (Glu194 deprotonated), and P3 in bR (system 4). The range of positions of the calcium ions sampled during the simulation projected onto a representative structure for system 4 together with alternate crystal structures. Labels and colors are as in Figure 2.
that the calcium ion placed at P2 in system 3 was not stable is reflected in the low average valence sum contribution of the glutamic acid residues (0.00 for Glu194 and 0.26 for Glu204) shown in Table III. The placing of an ion at P2 had little effect on the properties of the ion placed at P1.

In system 4, Glu194 was deprotonated as in system 2 but otherwise identical to system 3 with calcium ions placed at P1, P2, and P3. In this case, the calcium at P2 sampled a range of positions in the general vicinity of where it was placed initially (Fig. 5). However, the distribution was much more diffuse than in system 2. In particular, the ion interacts tightly with Glu194, which is reflected in the lower average valence sum contribution of this residue (Table III). Comparing the representative structure for system 4 to the available crystal structures, (Fig. 5) it can be seen that both Glu194 (residue f) and Glu204 (residue g) are displaced.

Calcium positioned near Glu9 (P3)

Considering simulations 3 and 4 together, there are 18 separate cases in which a calcium ion was placed near Glu9 in bR, simultaneously with one calcium near the Schiff base and a second calcium near the proton release group. In all cases, the calcium ion moved away from the proposed position (P3) during energy minimization and escaped into the solvent during the initial stages of unrestrained MD.

DISCUSSION

First, the simulations demonstrate that a calcium ion is not required to maintain the conformation of the Schiff base region (P1). The configuration of the Schiff base in the simulation of system 2, which does not contain a calcium ion in this region, is in good agreement with that found in the majority of the high-resolution crystal structures. When a calcium ion was placed at P1 in the vicinity of the Schiff base, significant changes in the local geometry structure with respect to the available crystallographic structures were observed. In particular, Asp85 and Asp212 orient toward the calcium ion, and the hydroxyl group of Tyr57 becomes directed toward the ion. In addition, the side chain of Arg82 moves to a more external location, with the guanidinium group interacting with the proton release group. Interestingly, the configuration obtained in the simulation of system 1, in which just a single calcium ion was placed in the Schiff base region (P1), shows similarities to the structure 1AP9,64,65 (after correction for 18% twinning). Previously, it had been argued that this structure requires the inclusion of a cation in the region of the Schiff base to account for one and two-photon spectroscopic data.22 The present results support this hypothesis. However, although it appears possible that a calcium ion could be accommodated in the region of the Schiff base, this would be associated with changes in the local geometry not seen in the majority of crystal structures.

The simulations of systems 2 and 4 suggest that the proton release group could function as a calcium binding site. In particular, the close similarity between the results obtained from the simulation of system 2 and the majority of the available crystal structures supports this conjecture. The most significant change observed in the simulation of system 2 when compared with the crystal structures is that Arg82 is found to adopt a more inward position, interacting directly with Asp85. In most of the crystal structures, the guanidinium group of Arg82 is oriented toward Asp212. A similar effect was observed previously by Kandt et al.29 who performed a simulation of bR in which the proton release group was protonated with no cations present. Another difference between system 2 and the crystal structures relates to the loss of a water molecule that hydrogen bonds to both the Schiff base and Asp85. The loss of this water molecule has also been observed in previous classical simulations.81,82 The water appears stable if a quantum mechanical treatment is used.29,82 Interestingly, the configuration of the Schiff base region observed in the simulation of system 2, in which Arg82 lies closer to Asp85 then proposed in the majority of the crystal structures is in very good agreement with the model proposed by Kusnetzow et al.22 to explain the results obtained from one-photon and two-photon spectroscopy.16 By inducing a shift in the position of Arg82, the presence of a calcium ion between Glu194 and Glu204 would also affect (lower) the pK_a of Asp85. This might explain the observed coupling between cation binding and the bR absorption spectrum. It would also help to explain the other experimental results including the observation that Asp212 is more strongly coupled to calcium binding than Asp85.6,20 It has been proposed previously that Glu194 and Glu204 coordinate a Zundel (H_3O_2^+) complex, which is the source of the proton being released to the bulk.49,83 Recent evidence even suggests a more complex situation, with direct involvement of more water molecules in a protonated water cluster.84,85 Although Zundel or Eigen complexes might only be formed transiently,85 the simultaneous presence of a protonated water cluster and a calcium ion in the extracellular region might at first seem unlikely. In this regard, we note that the overall charge in this region is negative due to the presence of Glu9, Glu194, and Glu204, and that the presence of both cationic species, would in fact render the interior of bR neutral.

The simulations do not support the proposal that calcium ions bind at the site P3 within the interior of bR near Glu9 simultaneously to calcium ions at sites P1 and P2, as calcium ions placed in this region were not stable. It is of course possible that the inclusion of polarization terms in the force field might enhance the stabilization of a calcium ion at this site. However, considering the very rapid loss of calcium ions from this site, it is very unlikely that even when including polarization effects a calcium ion would bind at this position. Nevertheless,
experimental results do suggest that Glu9 is involved in cation binding.26 In this case Glu9 may act indirectly, stabilizing the structure of the extracellular region. Likewise, the simulations do not support the simultaneous placement of calcium ions in the Schiff base region and the proton release group as this resulted in more widespread destabilization of the structure of bR.

CONCLUSIONS

A series of simulations of a highly detailed model of the PM containing three bR trimers with calcium ions placed at three proposed binding sites has been performed. The simulations suggest that a single calcium ion could be accommodated either in the region of the Schiff base or the region of the proton release group but not a proposed site near Glu9 in the interior of bR. Placing a calcium ion in the region of the Schiff base gives rise to a structure, which is roughly in line with the crystal structure proposed by Pebay-Peyroula et al.,54,85 but which differs significantly from the majority of crystal structures of ground state bR. When a calcium ion is placed in the region of the proton release group, the structures obtained in the simulations closely resemble the consensus crystal structure and are consistent with a range of experimental observations.14,26,27 However, the binding of a calcium ion between the glutamate residues forming the proton release group raises questions in regard to the nature of the group that releases the proton to the bulk and whether a calcium ion and a protonated water cluster might be present simultaneously.49,83–85

REFERENCES

7. Subramaniam S, Marti T, Khorana HG. Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu—the blue form is inactive in proton translocation. Proc Natl Acad Sci USA 1990;87:1013–1017.

