
Comparing geometric and kinetic cluster algorithms for molecular
simulation data

Bettina Keller,1,a� Xavier Daura,2 and Wilfred F. van Gunsteren1,b�

1Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, CH-8093 Zürich,
Switzerland
2Catalan Institution for Research and Advanced Studies (ICREA) and Institute of Biotechnology and
Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

�Received 31 January 2009; accepted 8 January 2010; published online 19 February 2010�

The identification of metastable states of a molecule plays an important role in the interpretation of
molecular simulation data because the free-energy surface, the relative populations in this landscape,
and ultimately also the dynamics of the molecule under study can be described in terms of these
states. We compare the results of three different geometric cluster algorithms �neighbor algorithm,
K-medoids algorithm, and common-nearest-neighbor algorithm� among each other and to the results
of a kinetic cluster algorithm. First, we demonstrate the characteristics of each of the geometric
cluster algorithms using five two-dimensional data sets. Second, we analyze the molecular dynamics
data of a �-heptapeptide in methanol—a molecule that exhibits a distinct folded state, a structurally
diverse unfolded state, and a fast folding/unfolding equilibrium—using both geometric and kinetic
cluster algorithms. We find that geometric clustering strongly depends on the algorithm used and
that the density based common-nearest-neighbor algorithm is the most robust of the three geometric
cluster algorithms with respect to variations in the input parameters and the distance metric. When
comparing the geometric cluster results to the metastable states of the �-heptapeptide as identified
by kinetic clustering, we find that in most cases the folded state is identified correctly but the overlap
of geometric clusters with further metastable states is often at best approximate. © 2010 American
Institute of Physics. �doi:10.1063/1.3301140�

I. INTRODUCTION

Molecular simulation techniques, such as molecular dy-
namics �MD� or Monte Carlo �MC�,1 are powerful tools for
the elucidation of the microscopic structure and the dynam-
ics of biomolecules and for the elucidation of the function-
ality associated with the former two. As raw output, these
simulations typically produce a large Boltzmann-weighted
ensemble of molecular structures or statistical mechanical
configurations which serve as the basic data set for further
analysis. If one is solely interested in some average over the
ensemble, it can be calculated without further detailed analy-
sis. If one would �additionally� like to organize and concep-
tualize this enormous structural data set in order to under-
stand �i� which parts of the configurational space are
accessible to the molecule at a given temperature, �ii� how
the molecule moves within this space, and �iii� how these
parts and movements eventually connect to particular mac-
roscopic and microscopic properties, clustering of the large
amount of configurational data in one way or the other is a
necessity. In this context, the term conformation is used to
describe a �small� part of the configurational space or a sub-
set in the configurational ensemble that comprises of struc-
turally related configurations. In small molecules the confor-
mations are usually defined such that they represent a

minimum in the free-energy surface, i.e., a metastable state,
and that different conformations are separated by significant
barriers from each other. It is, however, important to point
out that there is no exact definition of how to map a given
configurational or structural ensemble onto different confor-
mations.

For small molecules, such as n-butane, CH3�CH2�2CH3,
conformational assignment can be done based on a some-
what intuitive insight into the molecule’s conformational
space. According to this insight, the largest barriers in
n-butane will occur along the C1–C2–C3–C4-dihedral angle
� and the molecule’s conformational isomers are gauche ���
with ��60°, trans with ��180°, and gauche �+� with �
�300°, of which the trans-conformation is the lowest in
energy because in this conformation the two CH3 units are
farthest apart from each other. The strength of this descrip-
tion becomes immediately obvious if one acknowledges the
fact that n-butane has N=14 atoms and therefore 3N−6
=36 internal configurational degrees of freedom. This high-
dimensional space is projected onto only three states which
suffice to accurately describe the molecule’s free-energy
landscape, the relative populations in this landscape, and the
dynamics of the molecule.

For larger molecules, such an intuitive partitioning of the
structural ensemble becomes impossible due to the enormous
size and complexity of the configurational space. Conse-
quently, also the term conformation becomes fuzzier. Fre-
quently, one resorts to grouping structures according to con-
formational similarity using geometric cluster algorithms and

a�Electronic mail: bettina@igc.phys.chem.ethz.ch.
b�Author to whom correspondence should be addressed. Electronic mail:

wfvgn@igc.phys.chem.ethz.ch.

THE JOURNAL OF CHEMICAL PHYSICS 132, 074110 �2010�

0021-9606/2010/132�7�/074110/16/$30.00 © 2010 American Institute of Physics132, 074110-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3301140
http://dx.doi.org/10.1063/1.3301140
http://dx.doi.org/10.1063/1.3301140

refers to the resulting clusters as conformations.2,3 In this
sense, the term conformation merely denotes a subensemble
of structures that are more similar to each other than to the
remaining structures of the ensemble according to a given
similarity measure. In order to interpret these results, it is
then often �tacitly� assumed that these clusters also represent
metastable states.4,5 The underlying assumption here is that
large conformational changes are likely to be hindered by
barriers in the free-energy surface, whereas structures that
populate a common minimum in the free-energy surface
should be conformationally similar. Although these assump-
tions seem reasonable at a first glance, there is no guarantee
that they are correct for all types of molecules. As a matter of
fact, there are known cases in which large movements of,
e.g., side chains or other flexible parts of a molecule are
hardly hindered by any barrier.6,7 If such a behavior is known
or suspected for a molecule, the problem is commonly
evaded by adapting the similarity measure, thereby introduc-
ing a certain arbitrariness into the conformational analysis.
For example, when structurally clustering small peptides
with an eye to the �un�folding equilibrium, one typically in-
cludes only the backbone atoms or C�-atoms of the central
amino residues and neglects the movement of the side chains
and the terminal residues.

In order to extract information such as relative free en-
ergies, rates of conformational changes, or folding pathways
from MD simulations, it is essential to know the basins of
the free-energy surface as precisely as possible. A basin can
be either described as a region in phase space which is sur-
rounded by free-energy barriers or—in terms of
lifetimes—as a region in phase space in which a molecule is
likely to stay for a long time, i.e.,

tii���� � tij���� , �1�

where tii denotes the probability to stay in region i for a time
period �� and tij denotes the transition probability of going
from region i to region j within time ��. Note that Eq. �1�
represents a clear definition of the term metastable state,
which is independent of the size of the molecule. The link
between free-energy barrier heights and transition probabili-
ties can be understood with help of the Arrhenius equation,
which states that the rate kij of going from state i to j de-
creases exponentially as the barrier between the two states,
the activation energy Eij, increases,

kij = A exp�−
Eij

RT
� , �2�

where A is a prefactor that depends on the system, R is the
gas constant, and T is the temperature. In other words, if a
state i is surrounded by large barriers, all rates kij are small
and the probability of staying in i for a long period of time is
high.

Although the term metastable state has a precise defini-
tion, actually assessing the metastable states of a large mol-
ecule proves to be challenging and rather costly.8–10 In order
to identify metastable states, the phase space—usually re-
duced to the molecule’s conformational subspace—is dis-
cretized into the so-called microstates, where the term mi-
crostates simply denotes a very small part of the phase

space.9 These states are then grouped together into meta-
stable states according to kinetic proximity, i.e., the transition
probability of one microstate to another microstate of the
same group should be much higher than the transition prob-
ability to a microstate outside the group—a technique to
which we will refer as kinetic clustering.8–12 The reason why
this procedure is costly is that the transition probabilities
between all pairs of microstates have to be sampled to con-
vergence, whereas in geometric clustering, only the confor-
mational space has to be sampled with the appropriate
weights. Nevertheless, kinetic clustering is—in principle—
capable of directly identifying the metastable states of a mol-
ecule.

In this contribution, we first wish to assess how sensitive
the geometric cluster results are with respect to the choice of
the algorithm and its parameters and with respect to the
choice of the similarity measure. Second, we wish to test
how accurately geometric cluster algorithms reproduce the
metastable states. To this end, we cluster 15 000 structures of
a �-heptapeptide obtained from a MD simulation using three
different geometric cluster algorithms and compare the re-
sults. Then, we identify the metastable states of the molecule
by kinetic clustering and using 20 trajectories of a length of
500 ns, each of which started from a different initial configu-
ration. We sort the data set that was used for the geometric
clustering into these metastable states and compare the result
to the clusters obtained using the geometric cluster algo-
rithms.

II. THEORY

A. Geometric cluster algorithms

In geometric cluster algorithms, data points are literally
understood as points in a �potentially high-dimensional�
space for which some distance metric is defined.13 The goal
of the algorithm is then to partition a data set S into smaller
sets �s1 ,s2 ,s3 , . . .	 such that the distances between the data
points of a given set are smaller than their distances to data
points in any other set,

S = �s1,s2,s3, . . . ,sc	 . �3�

These sets are called “clusters.” We only consider nonfuzzy
cluster algorithms, that is, algorithms that sort data points
into disjoint clusters,

si � sj = 0 ∀ i, j with i � j . �4�

Given a distance measure dij between two data points i and j,
a distance matrix D for all pairwise distances in S can be
constructed. In principle, this distance matrix then has to be
permuted in such a way that it takes an approximately block-
diagonal form, where the blocks represent the clusters and
the matrix elements in the blocks should be smaller than all
other matrix elements,

D� = PDP−1. �5�

Due to the sheer number of possible permutations—they
grow with n!, where n is the number of data points in S—it
is usually impossible to find the optimal permutation in a
brute force manner. Instead, geometric cluster algorithms

074110-2 Keller, Daura, and van Gunsteren J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

rely on a number of iterative schemes and different conver-
gence criteria.14,15

We tested and compared three different types of geomet-
ric cluster algorithms, the first one being the neighbor algo-
rithm, as described in Ref. 4. This is a very simple and fast
algorithm in which the neighbors of a data point i are defined
to be those data points that lie within a �predefined� distance
from i. The data point with the most neighbors is considered
to be the medoid of the first cluster and all its neighbors are
members of the cluster. After the first cluster has been found,
all its members are removed from the data pool and the al-
gorithm is iterated until all data points have been assigned to
a cluster. The algorithm has one parameter: the distance cut-
off c, which represents the radii of the clusters. The neighbor
approach has the advantage that one does not need to keep
the entire distance matrix in the working memory of the
computer, it rather suffices to store a list of neighbors for
each data point. This allows the processing of large data sets
and makes the algorithm very fast.

The second algorithm we tested is the K-medoids algo-
rithm, which belongs to the class of partitioning cluster al-
gorithms. These algorithms assign in an initialization step all
data points to a predefined number of clusters and then itera-
tively optimize the assignment until some convergence crite-
rion is reached. Partitioning algorithms have the advantage
that wrong cluster assignments made in the course of the
algorithm have the chance to be corrected during a later it-
eration. However, they need the total number of clusters k as
an input parameter—a number that is usually not known a
priori. It can be estimated by preclustering the data using
other algorithms or by applying the partitioning algorithms
several times with different total numbers of clusters as input
and then deciding, using some cluster validity measure,
which clustering represents the structure of the data set best.
Also, the initial cluster assignment, which is usually done in
a random fashion, heavily influences the final partitioning of
the data set, and it is therefore customary to apply the algo-
rithm several times to the same data set with the same input
parameters but different assignments. On the one hand, this
approach can reveal several equally good partitionings, on
the other hand, it is not always possible to decide unambigu-
ously which solution is the best.

The third algorithm is a close variant of the Jarvis–
Patrick algorithm,16 which we—in order to have a more de-
scriptive name—will call the common-nearest-neighbor al-
gorithm. In contrast to most geometric cluster algorithms,
this algorithm is not based on the idea that members of a
cluster are closer to each other than to all other data points in
the data set, and it therefore also abandons the notion that
clustering is equivalent to reorganizing the distance matrix
into a block-diagonal form. Instead, it bases its cluster defi-
nition on a measure for the local data-point density around a
point i which mimics the way we �as human beings� intu-
itively recognize clusters in data sets such as, e.g., the scat-
terplots in Fig. 1. For this intuitive perception, neither the
distance of a given data point from the cluster center nor the
specific shape of the cluster—parameters that are utilized in
many geometric cluster algorithms—plays a crucial role. Nor
is the condition that intracluster distances should be smaller

than intercluster distances always fulfilled �see Fig. 1, test
cases 3–5�. Rather, we perceive the clusters as continuous
areas of high data point density and the cluster boundaries
are designated by a steep drop in data point density. In the
common-nearest-neighbor algorithm, a hitherto unassigned
data point is added to a cluster if it is connected to one of its
members by an area of sufficiently high data-point density. A
cluster is complete and is removed from the data pool if no
further data point can be added. Since the data-point density
between two data points i and j is hard to calculate if i and j
are points in a high-dimensional space, it is instead estimated
as the number of their common nearest neighbors. The near-
est neighbors of i are those data points that lie within the
nearest-neighbor-distance cutoff �nndc�. The number of
common-nearest neighbors of i and j is the number of data
points that are both nearest neighbors of i and of j. �This
number is, of course, 0 if i and j are further apart than
2nndc.� Suppose i is a member of cluster c1 and j is still
unassigned, then j will become a member of c1 if it has at
least nearest-neighbor-number cutoff �nnnc� neighbors with i
or any other member of c1. Once it is assigned to c1, it can
also attract unassigned data points. In contrast to the original
formulation of the Jarvis–Patrick algorithm, in which the n
data points closest to i are considered to be neighbors of i
independent of their distance to i, in the common-nearest-
neighbor algorithm only data points that lie within nndc are
considered to be neighbors. Neither is the total number of

FIG. 1. Results of three geometrical cluster algorithms-neighbor algorithm
�column 1�, K-medoids algorithm �column 2�, common-nearest-neighbor al-
gorithm �column 3� for five 2D test cases �rows 1–5�. Data points of the
same color belong to one cluster. For the K-medoids algorithm, the cluster
centers are indicated as differently colored dots at the center of each cluster.

074110-3 Comparing cluster algorithms for MD data J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

nearest neighbors restricted nor do all data points necessarily
have nearest neighbors. In this way, it ensured that the algo-
rithm stops enlarging the cluster when it reaches an area with
a drop in the local data-point density. Other than in the
neighbor algorithm where distance cutoff represents the clus-
ter radius, nndc designates a very local area around a data
point and should be much smaller than the cluster radius.
However, just as in the neighbor algorithm, it is not neces-
sary to store the entire distance matrix in the working
memory; instead, it suffices to keep the neighbor list, which
makes it easy to handle large data sets.

In this study, we use the atom-positional root-mean-
square difference �RMSD� as distance measure between two
i and j,

RMSDij =
 1

N
�
k=1

k=N

�xi,k − x j,k�2. �6�

Here, N is the number of atoms, and xi,k and x j,k are the
respective positions of atom k in structures i and j, possibly
after translational superposition of the centers of mass and
rotational fit. Although RMSD is the preferred distance mea-
sure in most cluster studies of molecular simulation data,
other measures such as the dihedral angle RMSD are pos-
sible.

B. Kinetic cluster algorithms

In contrast to geometric cluster algorithms, which parti-
tion a given data set without any direct reference to the un-
derlying conformational space, kinetic cluster algorithms di-
rectly partition the conformational space into regions such
that each region represents a metastable state �Eq. �1��. Meta-
stable states are equivalent to minima in the free-energy sur-
face, and the Arrhenius equation �Eq. �2� links the free-
energy-barrier heights surrounding a minimum to the
probability of staying in this minimum, i.e., its metastability.

The first and crucial step in kinetic cluster algorithms is
the discretization of the conformational space C into disjoint
microstates,

C = ��1,�2,�3, . . .	 , �7�

where the microstates typically form a complete cover of C.
The definition of the microstates is not trivial. On the one
hand, they have to be large enough that their total number is
still computationally manageable; on the other hand, they
have to be so small that they represent the conformational
space with sufficient resolution. A variety of approaches to
this problem have been developed.

The aim of kinetic cluster algorithms is to group these
microstates according to the kinetic proximity where the
transition probability tij����, which is the probability of find-
ing the system in � j at time t+�� given that it was in �i at
time t,

tij���� = P�� j�t + �����i�t�� , �8�

is used as measure of the kinetic proximity. The higher the
value of tij, the closer two mircostates �i and � j are kineti-
cally. Note that the transition probability must not depend on
the state of the system at t−�� , t−2�� , . . ., that is to say, the

system must have a Markovian behavior on the time scale
��. Analogous to geometric cluster algorithms, one arranges
these tij in a matrix of kinetic proximities, the transition ma-
trix T. Since the elements of the matrix represent probabili-
ties and the system can either stay in the current state or
transfer to another state, T is a row-stochastic matrix,

�
j

tij = 1 ∀ i . �9�

One now looks for a permutation P, which transforms T into
an almost block-diagonal form such that the matrix elements
within one block are significantly larger than the off-block
elements,

T� = PTP−1. �10�

Each block then corresponds to a metastable state and the
number of the metastable states can be determined by ana-
lyzing the eigenvalue spectrum of the transition matrix T.12

However, just as with the geometric cluster algorithms, a
brute-force search for P is prohibitive because the number of
possible permutations grows with n!, where n is the number
of microstates. In contrast to the distance matrices that are
used in geometric clustering, one can here exploit the fact
that transition matrices are row-stochastic and can be coarse
grained to a transition matrix Tcg over the metastable states.
The search-problem for P then becomes an optimization
problem in which the trace of the coarse-grained matrix Tcg

has to be maximized and which could be tackled, e.g., using
a Monte Carlo simulated annealing �MCSA� scheme.

In practice, one finds that in order for the MCSA to
converge to a reasonable result, one needs to have a good
starting guess. We use an idea proposed by Deuflhard et al.12

which exploits the properties of almost block-diagonal row-
stochastic matrices to generate such a starting guess. See
Ref. 17 for an illustration of the transformation of a sample
transition matrix T to the corresponding coarse-grained tran-
sition matrix Tcg.

1. Definitions of the microstates

Numerous methods for discretizing the conformational
space C into microstates �1 ,�2 ,�3 , . . . have been proposed
in literature, of which we summarize the eminent ones. Uni-
formly discretizing each �slow� degree of freedom into small
bins12,18–20 suggests itself and is also the most rigorous of all
methods. However, due to combinatorial explosion, this ap-
proach yields unmanageably large numbers of microstates
for systems with more than a few degrees of freedom. One
way to evade this problem is by reducing the dimensionality
of the space using, e.g., essential dynamics11 or by discretiz-
ing each degree of freedom independently along the minima
of its marginal probability distribution21 �performing a ki-
netic clustering on the isolated degrees of freedom�.9 The
latter two approaches are, however, only valid if the degrees
of freedom are mutually independent. An intermediate ap-
proach is to perform a kinetic cluster analysis on one degree
of freedom at a time and successively subdivide the data set
along the resulting clusters.22

Alternatively, one can detach oneself from the descrip-
tion of the conformational space in terms of internal degrees

074110-4 Keller, Daura, and van Gunsteren J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

of freedom and instead regard the conformations of the mol-
ecule as a whole, e.g., by performing a geometric cluster
analysis which is then iteratively refined using kinetic
clustering8 or by projecting the configuration of a protein
onto a binary code in which each digit represents one amino
acid and denotes whether this amino acid is in a helical state
or not �encoded as 1 and 0, respectively�.23 In another ver-
sion of these secondary structure strings, multiple secondary
states are encoded as letters and the configuration of the pro-
tein is represented by a letter string.10

2. Generation of the transition matrix

Once one has decided on a definition of the microstates,
each structure q�t� from a trajectory of molecular structures
is projected onto the appropriate microstate �= f�q�t��,
thereby transforming this trajectory into a trajectory of mi-
crostates

�q�0�,q�t1�,q�t2�, . . .� → ���0�,��t1�,��t2�, . . .� . �11�

It is now possible to count the transitions �i→� j that occur
within a lag time of t=��.

By moving a frame of t=�� over a MD trajectory, one
obtains the number of transitions f ij between microstate �i

and microstate � j which can be arranged into a so-called
frequency matrix F. Normalizing the rows of F, one obtains
the transition matrix T whose elements tij represent the prob-
ability of moving from microstate �i to microstate � j within
time t=��.

3. Markovian behavior

The description of the kinetics of a molecules in terms of
a transition matrix is only valid if the kinetics are Markovian
on the chosen time scale ��. Given that the system is in
microstate �i at time t, the probability that it will be in � j at
t+�� must not depend on the previous states of the system
but only on a time-invariant transition probability tij,

tij = P���t + ��� = � j���t� = �i� . �12�

Analyzing the eigenvalues 	i��� of transition matrices with
varying lag times � of a given system is an elegant way to
test whether the dynamics of the systems is Markovian.24

The quantity

�c,i = −
�

ln 	i���
�13�

is a characteristic time scale for the decay of the eigenvalue
	i��� with increasing lag time �. If the transition matrices
describe the dynamics of a Markovian system, this time scale
should be a constant and plotting �c,i versus � should result in
a horizontal line.

III. METHODS

A. Simulation

Twenty production runs of the �-heptapeptide
H-�-HVal-�-HAla-�-HLeu-�S ,S�- � -HAla��Me� - �-HVal-
�-HAla-�-HLeu-OH �see Fig. 2� in methanol were gener-
ated. The starting structures for each of the replicas were

taken randomly from a previous simulation25 of 400 ns. Each
of the replicas was simulated for 500 ns, adding up to a total
of 10 �s of the simulation data. The simulations were car-
ried out with the GROMOS96 software26 and the GROMOS
43A1 force field26 as previously.25 All bond lengths were
constrained using the SHAKE algorithm,27 allowing for a
time step of 2 fs. Solute configurations were saved every
0.1 ps. The system was simulated in a rectangular box using
periodic boundary conditions. The volume was kept con-
stant, and the solvent and solute molecules were indepen-
dently weakly coupled to temperature baths of 310 K �Ref.
28� with a coupling time of 0.1 ps. The number of solvent
molecules was 962. We used 0.8 nm/1.4 nm as twin-range
cutoff and 1.4 nm as reaction field cutoff with
rf=1.0. The
atom pair list for short-range interactions and the
intermediate-range forces were updated every 5 steps.

B. Geometric cluster algorithms

We extracted structures at intervals of 0.1 ns from the
simulations �5000 structures per replica�. 0.1 ns is the time
step for which the system starts to behave Markovian �cf.
Sec. III C 2� and the structures that are separated by this time
interval can be regarded as uncorrelated. For these
structures—after a translational superposition and rotational
fit—distance matrices were calculated using three different
distance measures:

�1� atom-positional RMSD of all atoms �aa�,
�2� atom-positional RMSD of all backbone atoms �bb1–7�,

and
�3� atom-positional RSMD of the backbone atoms of resi-

dues 2–6 �bb2–6�.

Generally, for molecules comparable in size to our
�-heptapeptide, a few thousand structures are accepted to be
sufficient for a structural cluster analysis. To test whether our
RMSD matrices were indeed converged, we constructed
RMSD matrices with different numbers of structures: 5000,
10 000, 15 000, 20 000, and 25 000.

We used three different geometric cluster algorithms to
cluster these data sets: the neighbor algorithm, the
K-medoids algorithm, and the common-nearest-neighbor al-
gorithm. We present here the pseudocode of the common-
nearest neighbor algorithm because this algorithm differs

A

B C D E F

FIG. 2. Panel �a�: chemical structure of the �-heptapeptide H2-�-HVal-�
-HAla-�-HLeu-�S ,S�-�-HAla��Me�-�-HVal-�-HAla-�-HLeu-OH+. Panel
�b�: structure of the folded state of this �-heptapeptide. Panels �c�–�e�: ar-
bitrarily chosen unfolded structures of this �-heptapeptide.

074110-5 Comparing cluster algorithms for MD data J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

from the more commonly used K-medoids and neighbor al-
gorithms in that it bases its cluster criterion on a local density
estimate. The pseudocode of the two other algorithms can be
found in the Appendix.

1. Common-nearest-neighbor-cluster algorithm

The common-nearest-neighbor-cluster algorithm has two
input parameters—the nearest-neighbor-distance cutoff nnnc
and the nearst-neighbor-number cutoff nncc—and is com-
posed of the following steps:

�1� Loop over all data points that have not been assigned to
a cluster yet.

• Find the data point with the highest number of nearest
neighbors within the nndc.

�2� This data point is the medoid of the current cluster.
�3� Loop over all data points that have not been assigned to

a cluster yet and keep looping until no further data
point can be added to the current cluster.

• For each data point, check if its number of common-
nearest neighbors with any of the points that have been
assigned to the current cluster so far is equal to or
greater than the nnnc.

• If this is true, add this data point to the current cluster.

�4� Add the current cluster to the list of clusters and re-
move its members from the pool of unassigned data
points.

�5� Repeat steps �1�–�4� until all data points have been as-
signed to a cluster.

C. Kinetic cluster algorithms

1. Definition of the microstates and generation
of the transition matrix

Two approaches are possible for the definition of mi-
crostates: �i� sorting the structure of the trajectory into very
small clusters using a geometric cluster algorithm or �ii� dis-
cretizing the conformational space �or subspace of the con-
formational space� directly. With regard to a comparison
with the results of geometric cluster algorithms, the former
approach has the advantage that one could use the same met-
ric for geometric and kinetic clustering, but the disadvantage
that a microstate definition which relies on a geometric clus-
ter algorithm is likely to bias the comparison. Also note that
the concept of metastable states exists, independent of the

representation of the molecule and as long as the chosen
metric does not obscure the barriers in the system, kinetic
clustering should reliably yield the metastable states. We
therefore opted for the latter approach.

We discretized the three possible backbone torsional
angles of residue i, C�O�i−1–Ni–C�,i–C�,i, the
Ni–C�,i–C�,i–C�O�i, and the C�,i–C�,i–C�O�i–Ni+1 dihe-
dral angles of residues 2–6 following a procedure described
in Ref. 9. In this approach one checks whether the torsional
angles are mutually independent and, if so, performs a ki-
netic cluster analysis on each torsional angle separately
thereby discretizing this degree of freedom into a small num-
ber of bins. The possible microstates of the molecule are then
a combination of these bins. The C�,i–C�O�i–Ni+1–C�,i+1

dihedral angle does not need to be discretized because it is
the dihedral angle of the peptide plane which is restrained to
a planar conformation. This yielded two dihedral angle mi-
crostates for each C�O�i−1–Ni–C�,i–C�,i dihedral angle,
three microstates for each Ni–C�,i–C�,i–C�O�i dihedral
angle and four �residues 3, 5, and 6� �two �residues 2 and 4��
for the C�,i–C�,i–C�O�i–Ni+1 dihedral angles. The exact
boundaries of these dihedral angle microstates are given in
Table I. A microstate of the overall peptide conformation is
constructed as a combination of dihedral angle microstates.
With the given discretization this amounts to a total of
1 990 656 possible microstates, most of which are, however,
never visited during the simulation. In order to decide which
of all these possible microstates should be taken into account
for the construction of the transition matrix, we counted how
often each of the possible microstates was visited during the
10 �s of simulation and discarded those microstates that
were visited by less then 0.01% of all trajectory structures.
This yielded a total of 87 microstates for which we con-
structed transition matrices with lag times ranging from �
=10 ps to �=500 ps. Transitions from and to the discarded
microstates were not included in the construction of the tran-
sition matrices and detailed balance was enforced by reading
out the trajectories forward and backward, i.e., each transi-
tion from a microstate i to a microstate j was also counted as
a transition from j to i. From a test set of 15 000 structures,
11 942 fall within these 87 microstates and 3058 structures
occupy one of the discarded microstates and were classified
as unstructured data �cf. line 2 in Table 8�.

2. Identification of the metastable states

We checked whether the dynamics of the �-heptapeptide
can be described as a Markov process using Eq. �13�. For lag
times � greater than 100 ps, the characteristic time scales for

TABLE I. Microstate boundaries of the flexible backbone torsional angles of residues 2–6 in the �-heptapeptide. Values are in degrees. The cis-conformation
corresponds to 0°.

Residue No. Residue name C�O�i−1–Ni–C�,i–C�,i Ni–C�,i–C�,i–C�O�i C�,i–C�,i–C�O�i–Ni+1

2 �-HAla 0; 115 0; 120; 240 0; 190
3 �-HLeu 0; 135 0; 120; 240 90; 180; 240; 330
4 �S ,S�-�HAla��Me� 0; 125 0; 110; 240 0; 145
5 �-HVal 0; 120 0; 105; 240 0; 115; 180; 240
6 �-HAla 0; 130 0; 115; 240 0; 115; 185; 245

074110-6 Keller, Daura, and van Gunsteren J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

the largest eigenvalues become approximately constant and
we chose the transition matrix with �=300 ps for the iden-
tification of the metastable states. A plot of the eigenvalues 	i

of T��=300 ps� yielded a gap between the fifth and sixth
eigenvalues. We can therefore expect to find five metastable
states.12 After having generated a starting guess for the defi-
nition of these five metastable states using an idea by Deu-
flhard et al.,12 we optimized the state definition by maximiz-
ing the trace of the coarse-grained transition matrix �see Eq.
�10� and Eqs. �A1�–�A3� in Ref. 17� using the MCSA
scheme.8 We started the MCSA at a temperature of TMCSA

=0.006 and decreased it to 0.0001 in 60 steps, making 1000
trial moves at each temperature. A trial move consisted of
randomly picking a microstate within a randomly chosen
metastable state and assigning it to another metastable state
which was also chosen randomly. If the trace of the resulting
coarse-grained matrix was greater than or equal to the trace
of the current coarse-grained matrix, we always accepted it.
If it was smaller, we accepted it with a probability of

p = exp��Tr/T� �14�

where �Tr is the difference in the traces of two matrices and
T is the current temperature.

Merging two metastable states often leads to a local
maximum of the trace in which the algorithm gets trapped.
For this reason, we prohibited empty metastable states, i.e., if
a metastable state at some point in the optimization consisted
of only one microstate, then this microstate could not be
chosen for a trial move. Note, however, that if a system with
n metastable states is described by a transition matrix with
less than n states �merged metastable states�, the trace of this
matrix lies below the optimal trace. Therefore, the merging
of metastable states during the optimization is an indication
that the starting guess or temperature or the temperature
steps of the MCSA scheme were not chosen appropriately.
We repeated the algorithm 80 times and used the definition
of the metastable states that corresponded to the coarse-
grained matrix with the largest trace.

IV. RESULTS

A. Test cases

Two-dimensional �2D� data sets, such as the five test
cases in Fig. 1, are particularly useful when characterizing
geometric cluster algorithms because in contrast to high-
dimensional data sets the results can be directly represented
in terms of 2D scatterplots, thereby revealing the features
and peculiarities of the cluster algorithm. Note that although

the cluster algorithms might show a more complex behavior
for higher-dimensional data sets, flaws which were detected
for the 2D test cases will definitely also affect the results
when the algorithms are applied to high-dimensional data
sets such as molecular simulation data.

We clustered each of the test cases with all three geo-
metric cluster algorithms �neighbor algorithm, K-medoids al-
gorithm, and common-nearest-neighbor algorithm� and also
systematically varied the input parameters. By visual inspec-
tion of the resulting 2D scatterplots, we decided whether the
test sets had been clustered correctly, i.e., according to hu-
man intuition. In the following, we will refer to those groups
of data points that are recognized as clusters by the human
intuition as “data point heap,” whereas the word “cluster”
will denote the results of the respective cluster algorithms.

All three geometric cluster algorithms succeed in clus-
tering test cases 1 and 2. For test case 3, the K-medoids and
the common-nearest-neighbor algorithms converge to a cor-
rect solution, whereas for test cases with concave clusters
�test cases 4 and 5�, only the common-nearest neighbor al-
gorithm partitions the data set correctly. Note, however, that
the results of the K-medoids algorithm depend not only on
the input parameter k �number of clusters� but also on the
initialization �first assignment of data points to clusters�, that
is, different runs with the same value of k can and will lead
to different partitions of the data set. Such a situation arose
for test case 2 with k=5 and test case 3 with k=2. �All other
values of k led to wrong partitions of the two data sets.� The
common-nearest-neighbor algorithm is the only algorithm
that partitions all five test cases correctly. It is also robust
with respect to a variation in its two input parameters: nndc
and nnnc. Table II illustrates this: independent of the test
case, we can vary nndc largely and find at least one value of
the nnnc for which the data set is clustered correctly.

Figure 1 also highlights the peculiarities and deficiencies
of each of the algorithms. In the neighbor algorithm, the data
point which has the most neighbors within a certain cutoff
radius is considered the center of the next cluster. Once this
cluster center is set, no correction is possible and all neigh-
boring data points are assigned to this cluster. If two data-
point heaps are not well separated or if their distance is
smaller than the respective elongation �as in test case 3�, the
cluster center can very well be assigned to a data point that
lies in between the two data point heaps and the resulting
cluster will comprise data points from both. The characteris-
tic structure of this “cutting effect” is a large circular cluster,
such as the black cluster in panel �7� of Fig. 1, the borders of
which do not correspond to the limits of the data-point heaps.

TABLE II. Combinations of nndc and nnnc for which test cases 1–5 were clustered correctly by the nearest-common-neighbor algorithm and the resulting
number of large clusters ��5 members�, small clusters �1–5 members�, and the total number of clusters.

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5

nndc 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
nnnc 2 6 11 20 2 3 10 13 2 5 11 ¯ 2 4 5 14 ¯ 2 4 13

Large 2 2 2 2 5 5 5 5 2 2 2 ¯ 2 2 2 2 ¯ 2 2 2
Small 5 7 8 13 7 0 12 6 3 3 5 ¯ 0 0 0 3 ¯ 0 1 6
Total 7 9 10 15 12 5 17 11 5 5 7 ¯ 2 2 2 5 ¯ 2 3 8

074110-7 Comparing cluster algorithms for MD data J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Panel �5� in the same figure shows a result of the K-medoids
algorithm for the second test case. This algorithm starts by
randomly choosing k cluster centers from the data set and
then iteratively optimizes cluster memberships and cluster
centers until convergence. Convergence is usually reached
after a few iterations. The algorithm, however, does not al-
ways converge to the intuitive result. Often we see results in
which a large data-point heap is split into two or more parts,
such as the central data-point heap in panel �5� of Fig. 1, or
small data-point heaps are merged into one cluster, such as
the two data-point heaps on the left side of the same panel.
This typically happens when during the initialization two
cluster centers are assigned to data points which are in the
same �large� data-point heap. If the data-point density more
or less steadily decreases from the center of the data-point
heap to its rims, such as in the first test case we often see that
data points at the rim of the heap are split off as singletons
�dots with various colors in panel �3� of Fig. 1�. This effect is
not severe for a 2D data set as only a few data points are split
off, but for higher-dimensional data sets, the ratio between
the number of data points on the rim of a data-point heap and
those at the center increases, which makes this effect pro-
nounced.

B. Geometric clustering results for a �-heptapeptide

1. Structural RMSD value distributions

In geometric cluster analysis, the RMSD matrix has to
meet two conditions in order to be a faithful representation
of the conformational ensemble of the molecule under study:
�i� the structures that were used for the construction of the
matrix have to be uncorrelated and �ii� there have to be
enough structures to cover the entire conformational space
with correct weights. We satisfy the first condition by only
using structures that are separated by 0.1 ns in the trajectory
of the �-heptapeptide �Fig. 2� and we test the second condi-
tion by constructing two RMSD matrices with the same pa-
rameters �i.e., atom set and number of structures� from inde-
pendent simulations and then comparing the distribution of
RMSD values within these matrices. Figure 3 shows the dis-
tribution of RMSD matrix elements resulting from using
5000 �row 1�, 10 000 �row 2�, 15 000 �row 3�, 20 000 �row
4�, and 25 000 �row 5� molecular structures calculated using
the three different atom sets: aa �column 1�, bb1–7 �column
2�, and bb2–6 �column 3�. Each of the graphs shows two
RMSD distributions for which the structures were drawn
from independent simulations �5000 structures: simulations 1
and 10; 10 000 structures: simulations 1, 2, 11, and 12;
15 000 structures: simulations 1–3 and 11–13; 20 000 struc-
tures: simulations 1–4 and 11–14; and 25 000 structures:
simulations 1–5 and 11–15�. For 5000 structures, the general
features of the RMSD distributions, i.e., number and position
of the peaks, are similar for each of the atom sets. However,
the relative weights of the peaks differ greatly for RMSD
matrices that were constructed from different simulations,
indicating that the various parts of conformational space
have not yet been sampled with equilibrium weights. The
two distributions become more similar as we add more struc-
tures, but even for 25 000 structures complete agreement is

not achieved. Since the similarity of the two distributions
does not significantly improve beyond 15 000 structures, we
decided to use RMSD matrices with 15 000 structures for
geometric clustering in this study. The fact that the two
RMSD distributions have approximately the same shape is
not a sufficient proof that the conformational space has been
sampled completely. Rather, one should regard this as a nec-
essary condition or an indication of complete sampling. In
practice, however, the available simulation data often limits
the number of structures that can be used for the construction
of RMSD matrices to a few thousand even for considerably
larger systems,15,29 which almost certainly imposes a large
uncertainty in the calculated cluster sizes.

The RMSD distributions of the three different atom sets
in Fig. 3 reflect two known effects: �i� the RMSD values
increase if more atoms are added to the sets and �ii� if the
very mobile side chains and terminal residues are included in
the atom set, their large displacements dominate the RMSD
values leading to a less structured RMSD distribution.

2. Choice of cluster parameters

The question of how to choose appropriate cluster pa-
rameters has to be answered differently for each of the algo-
rithms. For the neighbor-cluster algorithm, the distance cut-
off c represents the radius of a “typical” cluster within a
given data set and can be estimated in two ways.

0.0 0.4 0.8

0
1
2
3
4

RMSD / nm

p
[1

/n
m

] 1

0.0 0.4 0.8

0
1
2
3
4

RMSD / nm

p
[1

/n
m

] 4

0.0 0.4 0.8

0
1
2
3
4

RMSD / nm

p
[1

/n
m

] 7

0.0 0.4 0.8

0
1
2
3
4

RMSD / nm

p
[1

/n
m

] 10

0.0 0.4 0.8

0
1
2
3
4

RMSD / nm

p
[1

/n
m

] 13

0.0 0.4 0.8

0
1
2
3
4

RMSD / nm

p
[1

/n
m

] 2

0.0 0.4 0.8

0
1
2
3
4

RMSD / nm

p
[1

/n
m

] 5

0.0 0.4 0.8

0
1
2
3
4

RMSD / nm

p
[1

/n
m

] 8

0.0 0.4 0.8

0
1
2
3
4

RMSD / nm

p
[1

/n
m

] 11

0.0 0.4 0.8

0
1
2
3
4

RMSD / nm

p
[1

/n
m

] 14

0.0 0.2 0.4 0.6

0
2
4
6
8

RMSD / nm

p
[1

/n
m

] 3

0.0 0.2 0.4 0.6

0
2
4
6
8

RMSD / nm

p
[1

/n
m

] 6

0.0 0.2 0.4 0.6

0
2
4
6
8

RMSD / nm

p
[1

/n
m

] 9

0.0 0.2 0.4 0.6

0
2
4
6
8

RMSD / nm

p
[1

/n
m

] 12

0.0 0.2 0.4 0.6

0
2
4
6
8

RMSD / nm

p
[1

/n
m

] 15

all atoms backbone atoms
residues 1−7

backbone atoms
residues 2−6

5000
structures

10000
structures

15000
structures

20000
structures

25000
structures

FIG. 3. Distribution of RMSD values in RMSD matrices of 5000 data points
�row 1�, 10 000 data points �row 2�, 15 000 data points �row 3�, 20 000 data
points �row 4�, 25 000 data points �row 5� calculated using different atom
sets: aa �column 1�, bb1–7 �column 2�, bb2–6 �column 3�, and data from 11
different 500 ns simulations of the �-heptapeptide; solid line: data points
drawn from simulations 1 �row 1�, 1 and 2, �row 2�, 1–3 �row 3�, 1–4 �row
4�, and 1–5 �row 5�; dotted line: data points drawn from simulations 10 �row
1�, 11 and 12, �row 2�, 11–13 �row 3�, 11–14 �row 4�, and 11–15 �row 5�.

074110-8 Keller, Daura, and van Gunsteren J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

• The time series of the RMSD to the folded �NMR or x
ray� structure shows, for a folding-unfolding equilib-
rium such as exhibited by �-heptapeptides, a gap be-
tween folded and unfolded structures. RMSD values
that lie in this gap are a good estimate for radius of the
folded state and can be used as a distance cutoff.

• The first minimum in the RMSD distribution �see Fig.
3� is an equally good estimate for this radius �and hence
for the distance cutoff� and can be determined more
precisely.

The common-nearest-neighbor algorithm has two pa-
rameters: a distance cutoff, nndc, and a number cutoff, nnnc.
Unlike in the neighbor algorithm, the distance cutoff does
not represent a cluster radius, but the very small volume
around a given data point, in which its nearest neighbors can
be found. It, therefore, should be smaller than the location of
the first peak in the RMSD distribution �Fig. 3� and, second,
large enough that it lies in an area where the RMSD distri-
bution differs significantly from zero. Once the value of nndc
is set, the optimal value of nnnc can be chosen as follows.
Figure 4 shows the effect of varying nnnc on the number and
on the size of large clusters ��100 members�. We used the
bb2–6-RMSD matrix as dissimilarity matrix and set nndc to
0.038 nm. The value of nnnc was varied from 2 to 20. The
first panel shows the number of large clusters as a function of
nnnc. The number of large clusters grows stepwise until it
reaches a plateau at 5, after which it decreases to 4 �and later
on to smaller values and even 0; data not shown�. The step-
wise increase in the number of large clusters is related to
jumps in the size of the five largest clusters. nndc and nnnc
roughly define a data-point density �nnnc data points/
hypersphere with radius nndc� that acts as limiting density
separating highly populated areas in the data set from each
other. That is, if two highly populated areas are connected by
a higher data-point density, they are merged into one cluster,
if not, each of them forms its own cluster. In other words, the
higher the limiting density, the higher the resulting number
of clusters. Consequently, for a low limiting density as de-
fined by nnnc=2, the algorithm returns only two large clus-
ters. As we increase nnnc, originally large clusters are split
into smaller clusters. This happens the first time at nnnc=4
when the second cluster drops in size by about 700 members
and a third large cluster with 610 members arises. The num-
ber of large clusters then stays constant until nnnc=7 when
this third cluster is split into a cluster with 394 members and
a new large cluster with 150 members. The maximum num-
ber of large clusters is reached for nnnc=9. Here, the size of
the third cluster decreases by about 200 members and at the
same time the last large cluster with about 150 members
appears and the fourth cluster increases in size by about 50
members. After the maximum number of large clusters is
reached, the clusters continuously decrease in size until the
smallest of them eventually has less then 100 members and
is no longer counted as a large cluster �nnnc=14�. This is
most likely due to the splitting effect we described in panel
�3� of Fig. 1 as the density that is needed to merge a given
data point with an existing cluster increases, more an more
data points are split off as singletons from the original clus-

ter. Between nnnc=2 and nnnc=14, each of the cluster re-
sults is a valid division of the data set. However, the reso-
lution increases with increasing nnnc and we recommend
using a parameter combination for which the maximum
number of clusters is obtained, e.g., nndc=0.038 nm and
nnnc=10.

Two points are still noteworthy. First, since the algo-
rithm itself is not expensive—the majority of the computa-
tional time is spent on reading in the RMSD matrix—this
analysis can be performed on a routine basis. Second, the
analysis itself already yields a lot of information about the
data set. Note that the largest cluster slowly decreases in size
by splitting off small clusters and singletons, while clusters
3–5 are obtained by splitting the second cluster into large
ones. The number of data points that do not fall into any of
the large clusters, about one-third of the entire data set, stays
approximately constant. Obviously, we are dealing with a
data set, in which about 60% of all data points fall into a
quite homogenous cluster �cluster 1�, about 30% are scat-

FIG. 4. Partitioning of the bb2–6-RMSD matrix using the common-nearest-
neighbor algorithm, change in the number of large clusters ��100 mem-
bers�, and the cluster sizes of clusters 1–5 with the value of nnnc, where
nndc was set to 0.038 nm.

074110-9 Comparing cluster algorithms for MD data J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

tered around the conformational space without forming clus-
ters �unstructured data�, and the remaining 10% are spread
among 4 large clusters.

The K-medoids-cluster algorithm takes the number of
clusters as an input parameter. Unfortunately, usually nothing
is known about the optimal number of clusters unless one
already has results from other cluster algorithms. Since both
the neighbor-cluster and the common-nearest-neighbor-
cluster algorithms indicated that there are only few dominant
clusters, we varied the input parameter from k=2 to k=9 in
steps of 1 �data not shown� and present results for k=5 in the
remainder of this publication.

3. Cluster sizes

We clustered RMSD matrices that were constructed for
three different atom sets �aa, bb1–7, and bb2–6� using three
different geometric cluster algorithms. For each combination
of RMSD matrix and cluster algorithm, we conducted the
analysis three times with slightly varied input parameters.

Tables III–V show the results in terms of cluster sizes of
large clusters �in percentage of the complete data set�, where
we define a large cluster as a cluster with more than 100
members. The numbers in these three tables give us a first
characterization of the data set and it is most interesting to

note that this characterization does not vary strongly when
the cluster parameters or even the underlying atom set is
varied, but rather depends strongly on the applied cluster
algorithm. The neighbor algorithm �Table III� partitions our
data set into one very large cluster comprising of
�52%–66% of all data points, followed by a second cluster
with �6%–9% of all data points, and then clusters of con-
tinuously decreasing size. For all three RMSD matrices, it
finds between 8 and 13 large clusters and �11%–27% of the
data points fall into small clusters, i.e., clusters with 100
members or less. Because the clusters returned by this algo-
rithm typically continuously decrease in size, the distinction
between large and small clusters is arbitrary.

The K-medoids algorithm �Table IV� divides the data set
into approximately uniformly sized clusters and all of the
cluster sizes are well above 100, making a distinction be-
tween small and large clusters unnecessary. We find signifi-
cant differences between the various atom sets. Moreover,
the results also depend on the initialization, e.g., for the
aa-atom set, runs 1 and 2 yield comparable cluster sizes,
which, however, differ from those of run 3.

The common-nearest-neighbor algorithm yields the most
constant results, with respect to variation in the cluster pa-
rameters and the underlying atom set and cluster sizes �see

TABLE III. Sizes of the large clusters ��100 members� returned by the neighbor algorithm in percent of the complete data set �15 000 structures�: first row,
atom set; second row ,n=cluster number, number of the partition used in the text, and in other tables, c=distance cutoff in nm; body, cluster sizes; last row,
s.c.=number of data points in small clusters, i.e., clusters with �100 members.

n

All atom �aa� Backbone residues 1–7 �bb1–7� Backbone residues 2–6 �bb2–6�

I II III I II III I II III
c 0.22 0.24 0.26 0.14 0.16 0.18 0.08 0.10 0.12

1 59.53 61.99 65.63 54.35 58.30 61.2 51.77 59.85 63.54
2 7.72 8.33 7.25 6.75 7.63 9.127 6.46 7.03 8.99
3 4.15 3.06 3.53 3.73 3.89 3.247 5.02 4.25 4.78
4 2.06 2.37 2.32 3.11 2.78 3.06 3.15 3.11 1.98
5 1.18 1.41 1.68 1.90 1.31 1.29 2.69 1.43 1.84
6 0.91 1.09 1.47 1.15 1.10 1.26 1.46 1.29 1.19
7 0.91 1.07 1.14 1.04 1.05 1.12 0.87 0.93 1.19
8 0.85 0.93 0.93 0.71 0.87 1.00 0.83 0.89 1.09
9 0.86 0.83 0.86 0.87 0.75 0.81 0.99
10 0.85 0.75 0.73 0.86 0.78 0.95
11 0.77 0.73 0.70 0.74 0.70 0.85
12 0.73 0.73 0.69 0.68 0.71
13 0.69 0.68
s.c. 22.70 16.56 13.01 27.25 20.7 14.78 27.00 17.57 11.20

TABLE IV. Sizes of the large clusters ��100 members� returned by the K-medoids algorithm in percent of the complete data set �15 000 structures�: first row,
atom set; second row, n=cluster number, number of the partition used in the text and in other tables, number of the initialization; and body, cluster sizes.

n

All atom �aa� Backbone residues 1–7 �bb1–7� Backbone residues 2–6 �bb2–6�

I II III I II III I II III
Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

1 27.56 27.42 26.06 27.70 46.45 34.81 50.71 49.39 29.59
2 26.93 27.24 20.11 26.69 21.01 31.61 18.15 16.99 22.37
3 22.63 22.73 18.47 16.93 12.67 15.83 11.03 15.15 18.41
4 12.91 11.64 17.96 15.32 11.16 9.71 10.69 11.96 17.60
5 9.98 10.97 17.40 13.36 8.71 8.05 9.41 6.51 12.03

074110-10 Keller, Daura, and van Gunsteren J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Table V�. Similar to the neighbor algorithm, it finds one large
cluster covering �53%–60% of the data points, all other
clusters are smaller by at least an order of magnitude with
the second cluster covering about 4%–5% of the data points.
The algorithm finds between 3 and 5 large clusters and sorts
�31%–40% of the data points into small clusters. Contrary
to the neighbor algorithm, the 100-member-limit marks a gap
in the cluster sizes inherent to this algorithm: large clusters
are well above this limit and the vast majority of the small
clusters are singletons with only few small clusters compris-
ing of 5–30 members.

4. Variation in the cluster parameters and the
underlying atom set

When comparing two alternative partitions A
= �a1 ,a2 , . . .	 and B= �b1 ,b2 , . . .	 of a given data set, similar
cluster sizes are only a hint that these two partitions might be
similar, but do not constitute a sufficient proof. To assess
how similar the two partitions are, one needs to know how
large the overlap between any pair of clusters ai ,bj is, i.e.,
how many of the data points in ai are also found in bj. In
Tables VI and VII we report this type of overlap numbers for
various partitions of our data set. We consider only the five
largest clusters of each partition and again sort them by size
and arrange the overlap numbers in a matrix �three matrices
per panel�. If two partitions are very similar, one would ex-
pect numbers in the order of the corresponding cluster sizes
on the diagonal elements and mostly zeros or small entries in
the off diagonal elements. Conversely, if two partitions are
very different, one expects large entries on both the diagonal
and off-diagonal elements.

Table VI assesses the influence of a slight variation in
the parameters on the partition of a given data set. Here, we
only report for each algorithm �panels �1�–�3�� the overlap
matrices for different partitions of the bb2–6-RMSD matrix,
but the overlap matrices of the other atom sets yield a similar
picture. For each of the three distance cutoffs: �I� c
=0.08 nm, �II� c=0.10 nm, and �III� c=0.12 nm, the neigh-
bor algorithm identifies one dominant cluster, all of which
have a large overlap with each other. More precisely, the size
of this first cluster is directly linked to the distance cutoff c:
the relatively small cluster of I is a subset of cluster 1 in II as

well as in III. Likewise, cluster 1 in II is a subset cluster 1 in
III. Apart from that, clear matches between clusters of differ-
ent partitions are rare. More often one finds that a cluster in
one partition is a subset of a larger cluster in another parti-
tion, e.g., cluster 3 in I is a subset of both cluster 2 in II and
cluster 2 in III.

In the K-medoids algorithm we did not vary the cluster
parameter k but rather the initialization and present the re-
sults for k=5. Runs 1 �I� and 2 �II� yield similar cluster sizes
and also the overlap between the respective clusters 1 and 2
is large. Despite the fact that both clusters 1 and 2 in I also
have overlap with cluster 5 from II, the overlap is so large
that we can safely say that clusters 1 and 2 in I are the same
as clusters 1 and 2 in II. The overlap pattern for clusters 3—5
is more complicated and no clear match is possible. Run 3
�III� yields cluster sizes that were quite different from those
in I and II, yet we can still match some of its clusters to the
partitions I and II: clusters 1 and 2 in III together constitute
cluster 1 in I or II, also cluster 4 in III is largely identical to
cluster 2 in I or II. Clusters 3 and 5 cannot be matched. One
should, however, also note that these overlaps are not as
clear as in the comparison of I and II.

The common-nearest-neighbor algorithm is the most ro-
bust of the three geometric cluster algorithms with respect to
a variation in the input parameters. Clusters 1, 2, and 4 in I
�nndc=0.036 nm, nnnc=4� are largely identical to clusters
1, 2, and 5 in II �nndc=0.038 nm, nnnc=10�. In the com-
parison of I and III �nndc=0.040 nm, nnnc=10�, again
clusters 1 and 2 in I match clusters 1 and 2 in III, whereas
clusters 3 and 4 in I together constitute cluster 3 in III. The
overlap of II and III yields as similar picture: again the re-
spective clusters 1 and 2 match and cluster 3 in III is split
into clusters 3–5 in II.

In Table VII we test the sensitivity of the neighbor algo-
rithm and the common-nearest-neighbor algorithm with re-
spect to the variation in the underlying atom set. In the
neighbor algorithm, the largest clusters for all atom sets
show the largest overlap among each other meaning that
clusters 1 in aa, bb1–7, and bb2–6, respectively, are largely
identical. Also the second clusters for all three atom sets still
show about 80% overlap among each other. Clusters 3–5 in
aa cannot be clearly matched to any of the clusters in bb1–7

TABLE V. Sizes of the large clusters ��100 members� returned by the common-nearest-neighbor algorithm in percent of the complete data set �15 000
structures�: first row, atom set; second row, n=cluster number, number of the partition used in the text and in other tables, nndc=nearest-neighbor-distance
cutoff in nm, nnnc=nearest-neighbor-number cutoff; body, cluster sizes; and last row, s.c.=number of data points in small clusters, i.e., clusters with �100
members.

n

All atom �aa� Backbone residues 1–7 �bb1–7� Backbone residues 2–6 �bb2–6�

I II III I II III I II III
nndc 0.09 0.10 0.11 0.06 0.07 0.08 0.036 0.038 0.04
nnnc 2 3 6 6 12 20 4 10 10

1 52.92 54.96 56.17 55.25 57.37 59.09 60.43 59.54 60.27
2 3.51 3.97 4.32 4.07 4.52 4.87 4.83 4.29 4.61
3 2.30 2.47 2.61 2.39 2.63 2.88 2.74 1.31 3.61
4 1.25 1.41 1.45 1.39 1.46 1.55 1.17 1.23
5 0.81
s.c. 39.91 37.10 35.22 36.75 33.96 31.61 30.66 32.83 31.37

074110-11 Comparing cluster algorithms for MD data J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

or bb2–6. The difference between bb1–7 and bb2–6 is smaller:
here, also the third clusters are largely identical. Despite the
fact that the kernels of the largest clusters were not affected,
part of their members was assigned to other clusters when
the atom set changed. This is reflected by the large off-
diagonal elements in the overlap matrices. For example, in
the first row of the overlap matrix between aa and bb2–6, one
sees that 119 and 264 members of the largest cluster in aa
have been assigned to clusters 2 and 4 in bb2–6, respectively.
This shows that the borders of cluster 1 in one atom set
might cut through clusters 2, 3, or 4 in another atom set.

The picture is different for the common-nearest-neighbor
algorithm. Here, the cluster definition seems to be hardly
influenced by the choice of the atom set. The overlap be-
tween two clusters in different partitions is either in the order
of the cluster size or zero. The difference between cluster
size and overlap is covered by small clusters �last row and
column in each matrix�. One can speculate on the reason
why this algorithm is so robust with respect to the variation
in the atom set: in principle, it tries to cut along the minima
of the distribution, thereby identifying its maxima, which, in
turn, correspond to the minima of the free-energy surface.
Due to sampling, one typically does not analyze the distribu-

tion in the complete conformational space but only its pro-
jection onto the conformational subspace of the chosen atom
set. Minima that are present in the complete distribution
might be blurred or even absent in its projection; however,
the converse—minima that are present in the projection but
are less pronounced in the complete distribution—is not pos-
sible. Therefore, if the atom set bb2–6 suffices to faithfully
represent the essential barriers in the free-energy landscape,
adding atoms that move over large distances but are essen-
tially unhindered, such as side chains or the terminal resi-
dues, will not change the cluster results. Using cluster algo-
rithms that define clusters based on some distance to a
cluster center, such as the neighbor or the K-medoids algo-
rithms, adding highly mobile atoms may obscure the cluster
boundaries. However, note that these algorithms rely on the
assumption that all clusters have an approximately spherical
shape and are separated by distances larger than their diam-
eter and here a projection can help fulfill these assumptions.

C. Kinetic clustering results for the �-heptapeptide

We have discretized the conformational space of the
�-heptapeptide �cf. Fig. 2� into microstates and—using ki-

TABLE VI. Variation in the cluster parameters �the initializations for different partitions of the bb2–6-RMSD matrix�: first row and column of each subtable,
cluster number; second row and column in each subtables, cluster size; body of each subtable, overlap matrix of the first five large clusters; and last row and
column of each subtable, s.c.=number of data points in small clusters, i.e., clusters with �100 members and their overlap with other clusters. Neighbor
algorithm: �I� c=0.08 nm, �II� c=0.10 nm, and �III� c=0.12 nm. K-medoids algorithm: �I� run 1, �II� run 2, and �III� run 3. Common-nearest-neighbor
algorithm: �I� nndc=0.036 nm, nnnc=4; �II� nndc=0.038 nm, nnnc=10; and �III� nndc=0.04 nm, nnnc=10.

Neighbor algorithm

II 1 2 3 4 5 s.c. III 1 2 3 4 5 s.c. III 1 2 3 4 5 s.c.
I Size 8978 1054 638 467 215 3648 I Size 9531 1348 717 297 276 2831 II Size 9531 1348 717 297 276 2831

1 7765 7765 0 0 0 0 0 1 7765 7765 0 0 0 0 0 1 8978 8976 0 0 0 0 2
2 969 678 0 0 281 0 10 2 969 942 0 0 0 0 27 2 1054 5 1018 0 0 0 31
3 753 0 751 0 0 0 2 3 753 0 753 0 0 0 0 3 638 2 61 575 0 0 0
4 473 0 0 471 0 0 2 4 473 0 12 461 0 0 0 4 467 364 0 4 0 0 99
5 403 344 0 0 0 0 59 5 403 375 0 0 0 0 28 5 215 0 130 3 0 17 65
s.c. 4637 191 303 167 186 215 3579 s.c. 4637 449 583 256 297 276 2776 s.c. 3648 191 139 135 297 17 2634

K-medoids algorithm, k=5
II 1 2 3 4 5 s.c. III 1 2 3 4 5 s.c. III 1 2 3 4 5 s.c.

I Size 7408 2548 2273 1794 977 ¯ I Size 4439 3355 2761 2640 1805 ¯ II Size 4439 3355 2761 2640 1805 ¯

1 7607 7396 0 0 0 211 ¯ 1 7607 4341 3253 2 4 7 ¯ 1 7408 4143 3259 2 4 0 ¯

2 2723 0 2504 2 0 217 ¯ 2 2723 40 51 23 2600 9 ¯ 2 2548 5 51 30 2462 0 ¯

3 1655 12 2 180 1275 186 ¯ 3 1655 49 51 1057 1 497 ¯ 3 2273 0 0 1785 9 479 ¯

4 1603 0 1 742 516 344 ¯ 4 1603 9 0 301 1 1292 ¯ 4 1794 36 41 884 0 833 ¯

5 1412 0 41 1349 3 19 ¯ 5 1412 0 0 1378 34 0 ¯ 5 977 255 4 60 165 493 ¯

s.c. ¯ ¯ ¯ ¯ ¯ ¯ ¯ s.c. ¯ ¯ ¯ ¯ ¯ ¯ ¯ s.c. ¯ ¯ ¯ ¯ ¯ ¯ ¯

Common-nearest-neighbor algorithm
II 1 2 3 4 5 s.c. III 1 2 3 4 5 s.c. III 1 2 3 4 5 s.c.

I Size 8931 643 196 184 122 4924 I Size 9040 691 542 ¯ ¯ 4727 II Size 9040 691 542 ¯ ¯ 4727

1 9065 8929 0 0 0 0 136 1 9065 9011 0 0 ¯ ¯ 54 1 8931 8931 0 0 ¯ ¯ 0
2 725 0 641 0 0 0 84 2 725 0 679 0 ¯ ¯ 46 2 643 0 643 0 ¯ ¯ 0
3 411 0 0 196 184 0 31 3 411 0 0 391 ¯ ¯ 20 3 196 0 0 196 ¯ ¯ 0
4 175 0 0 0 0 121 54 4 175 0 0 148 ¯ ¯ 27 4 184 0 0 184 ¯ ¯ 0
5 ¯ ¯ ¯ ¯ ¯ ¯ ¯ 5 ¯ ¯ ¯ ¯ ¯ ¯ ¯ 5 122 0 0 122 ¯ ¯ 0
s.c. 4624 2 2 0 0 1 4619 s.c. 4624 29 12 3 ¯ ¯ 4580 s.c. 4924 109 48 40 ¯ ¯ 4727

074110-12 Keller, Daura, and van Gunsteren J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

netic clustering—have sorted these microstates into five
metastable states. The remaining microstates represent a part
of the conformational space, which is not characterized by
clear minima and barriers but along which very diffusive
dynamics occur. We classified structures that correspond to
these microstates as “unstructured data.” In order to be able
to compare the kinetic cluster results to the ones from the
geometric clustering, we assigned each structure from our
test set of 15 000 structures to its microstate and then sorted
them into the corresponding metastable state or to the group
of unstructured data. The second line in Table VIII shows the
partition of the data set into metastable states and unstruc-
tured data. Almost 60% of the data points are assigned to
metastable state 5 which represents the folded state. Three
out of the four remaining metastable states contain on the
order of 1000 members. Finally, metastable state 2 is with
114 members very small. It is interesting to note that about
20% of the data is classified as unstructured, which is in the
same order of magnitude as the portion of unstructured data
identified by the neighbor and the common-nearest-neighbor
algorithm.

1. Comparison of the geometric to the kinetic cluster
results

Table VIII shows the overlap of the results obtained by
geometric cluster algorithms with the metastable states ob-
tained by kinetic clustering for the bb2–6-RMSD matrix.

For the neighbor algorithm, there is a large overlap be-
tween metastable state 5 �folded state� and cluster 1: about
96% of the data points in metastable state 5 are assigned to
cluster 1. Also despite the fact that 4.5% of the data points in
metastable state 5 are assigned to cluster 4, and cluster 1 also
has some overlap with metastable state 1, we can safely
claim that cluster 1 represents the folded state. Furthermore,
there is an approximate correspondence between metastable
state 4 and cluster 2. 85% of all data points in metastable
state 4 are assigned to cluster 2. Cluster 2, however, also has
considerable overlap with metastable state 3, meaning that
the neighbor algorithm does not accurately resolve the bar-
rier between metastable states 3 and 4. Metastable state 3 has
overlap with clusters 2, 3, and 5 and one may argue that this
metastable state is essentially split into clusters 3 and 5 with

TABLE VII. Variation in the atom set: first row and column of each subtable, cluster number; second row and column in each subtables, cluster size; body
of each subtable, overlap matrix of the first five large clusters; and last row and column of each subtable, s.c.=number of data points in small clusters, i.e.,
clusters with �100 members and their overlap with other clusters. Neighbor algorithm: aa: c=0.24 nm, bb1–7: c=0.16 nm, bb2–6: c=0.10 nm. Common-
nearest-neighbor algorithm: aa: nndc=0.10 nm, nnnc=3, bb1–7: nndc=0.07 nm, nnnc=12, bb2–6: nndc=0.038 nm, nnnc=10.

Neighbor algorithm

bb1–7 1 2 3 4 5 s.c. bb2–6 1 2 3 4 5 s.c. bb2–6 1 2 3 4 5 s.c.
aa Size 8757 1144 583 417 197 3902 aa Size 8978 1054 638 467 215 3648 bb1–7 Size 8978 1054 638 467 215 3648

1 9298 8724 92 0 256 31 195 1 9298 8767 119 9 264 0 139 1 8757 8572 22 0 72 0 91
2 1249 0 922 227 0 1 99 2 1249 0 836 302 0 48 63 2 1144 0 981 45 1 33 84
3 459 0 0 324 0 0 135 3 459 0 0 284 0 22 153 3 583 1 0 514 0 2 66
4 355 1 0 0 102 129 123 4 355 113 0 0 76 0 166 4 417 134 0 7 244 0 32
5 211 0 125 0 0 0 86 5 211 0 81 0 0 9 121 5 197 121 0 0 8 0 68
s.c. 3428 32 5 32 59 36 3264 s.c. 3428 98 18 43 127 136 3006 s.c. 3902 150 51 72 142 180 3307

Common-nearest-neighbor algorithm
bb1–7 1 2 3 4 5 s.c. bb2–6 1 2 3 4 5 s.c. bb2–6 1 2 3 4 5 s.c.

aa Size 8606 678 395 219 ¯ 5102 aa Size 8931 643 196 184 122 4924 bb1–7 Size 8931 643 196 184 122 4924

1 8244 8192 0 0 0 ¯ 52 1 8244 8165 0 0 0 0 79 1 8606 8512 0 0 0 0 94
2 595 0 577 0 0 ¯ 18 2 595 0 545 0 0 0 50 2 678 0 595 0 0 0 83
3 371 0 0 355 0 ¯ 16 3 371 0 0 0 176 113 82 3 395 0 0 0 178 114 103
4 212 0 0 0 203 ¯ 9 4 212 0 0 180 0 0 32 4 219 0 0 185 0 0 34
5 ¯ ¯ ¯ ¯ ¯ ¯ ¯ 5 ¯ ¯ ¯ ¯ ¯ ¯ ¯ 5 ¯ ¯ ¯ ¯ ¯ ¯ ¯

s.c. 5578 414 101 40 16 ¯ 5007 s.c. 5578 766 98 16 8 9 4681 s.c. 5102 419 48 11 6 8 4610

TABLE VIII. Comparison of algorithms using the atom set backbone, residues 2–6: �I� kinetic clustering; �II� neighbor algorithm, c=0.10 nm; �III�
K-medoids, k=5, run 2; and �IV� common-nearest-neighbor algorithm, nndc=0.038 nm, nnnc=10.

I 1 2 3 4 5 s.c. I 1 2 3 4 5 s.c. I 1 2 3 4 5 s.c.

II Size 1098 114 1164 847 8719 3058 III Size 1098 114 1164 847 8719 3058 IV Size 1098 114 1164 847 8719 3058

1 8978 337 0 0 11 8404 226 1 7408 371 46 0 39 6719 233 1 8931 313 0 2 3 8469 144
2 1054 2 0 234 722 0 96 2 977 260 25 22 2 1 667 2 643 0 0 2 619 0 22
3 638 0 0 554 7 3 74 3 2273 175 6 893 12 4 1183 3 184 0 0 176 1 0 7
4 467 92 0 8 3 214 150 4 2548 155 32 25 7 1994 335 4 196 0 0 192 0 0 4
5 215 6 0 139 0 0 70 5 1794 137 5 224 787 1 640 5 122 0 0 122 0 0 0
s.c. 3648 661 114 229 104 98 2442 s.c. ¯ ¯ ¯ ¯ ¯ ¯ ¯ s.c. 4924 785 114 670 224 250 2881

074110-13 Comparing cluster algorithms for MD data J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

some contribution from cluster 2. Metastable state 2 is not
recognized by the neighbor algorithm but all its data points
are characterized as unstructured data. Similarly, metastable
state 1 has some overlap with clusters 1 and 4, but the ma-
jority of its data points is characterized as unstructured data.
Note that it is quite possible that metastable states are split
into several clusters by a sensitive geometric cluster algo-
rithm because a metastable state can consist of several
minima which are separated by low energy barriers and
which, therefore, are not resolved by the kinetic cluster al-
gorithm. If, on the other hand, a geometric cluster covers two
or more metastable states, the geometric cluster algorithm
did not succeed in recognizing the large energy barrier sepa-
rating these states and the clusters do not properly reflect the
metastable states.

The overlap pattern for the K-medoids algorithm is a lot
more crowded and no obvious match between its clusters and
the metastable states can be found. The folded state, meta-
stable state 5, has the largest overlap with cluster 1 but also
significant overlap with cluster 4. On the other hand, cluster
1 has significant overlap with metastable state 1 and the un-
structured data and some overlap with metastable states 2
and 4. Nevertheless, one can claim that cluster 1 and meta-
stable state 5 approximately correspond to each other. The
data points in Table IV are—for a large part—a subgroup of
the data points in cluster 5. However, since cluster 5 has also
large overlap with metastable states 1 and 3 and the unstruc-
tured data points, we cannot claim correspondence between
metastable state 4 and cluster 5. For metastable states 1–3,
we do not find any correspondence with the five clusters.

Of the three geometric cluster algorithms, the common-
nearest-neighbor algorithm has the clearest overlap pattern
with the metastable states. Its biggest cluster �cluster 1� cor-
responds to the folded state �metastable state 5�: no other
cluster has any overlap with this state and cluster 1 only has
significant overlap with metastable state 1. Likewise cluster
2 and metastable state 4 are identical. Metastable state 3 has
overlap with clusters 3–5, all of which have no overlap with
any of the other metastable states. On could argue that meta-
stable state 3 is split into three clusters. However, note that
actually about half of the data points that are found in meta-
stable state 3 are characterized as unstructured data by the
nearest-neighbor algorithm. As with the neighbor algorithm,
metastable state 2 is not recognized by the common-nearest-
neighbor algorithm, instead all data points that belong to this
state are characterized as unstructured data. This is possible
if the data point density is very low in this state, which can
either happen if the minimum is rather high in energy so that
the overall probability of visiting it is low or if the minimum
is very broad �entropic state� so that the �Boltzmann-
weighted� fraction of data points that belong to this state are
spread over a wide area of the conformational space. Meta-
stable state 1 has some overlap with cluster 1 but is essen-
tially not recognized. The same arguments as for metastable
state 2 apply here. Note that the nearest-neighbor algorithm
characterizes many data points that belong to metastable
states as unstructured data, i.e., the overlap between the un-
structured data of the nearest neighbor algorithm and the
metastable states 1–5 is very large. This is most likely the

same effect as we saw in the test cases: data points that lie at
the rims of the metastable states where the data point density
slowly decreases are split off as singletons by the nearest-
neighbor algorithm.

V. CONCLUSION

In this contribution, we addressed the question: “To
which extent do the results of geometric cluster algorithms
when applied to molecular simulation data reflect the meta-
stable states of a molecule?” To this end, we first compared
and characterized three different geometric algorithms by ap-
plying them to 2D test data sets. Then, we tested their ro-
bustness with respect to the variation in their input param-
eters, including the underlying distance measure by applying
them to a data set of 15 000 structures of a �-heptapeptide
and comparing the cluster-overlap of the various results. Fi-
nally, we identified the metastable states of this
�-heptapeptide using a kinetic cluster method and compared
the overlap of these states with the geometric cluster results.

The test cases confirmed that geometric cluster algo-
rithms, which base their cluster definition on the distance to
a cluster center, such as the neighbor-cluster algorithm and
the K-medoids-cluster algorithm, are generally not capable
of identifying elongated or convex clusters. The common-
nearest-neighbor algorithm, which bases its cluster definition
on an estimate of the data-point density, however, correctly
clustered all five test cases.

Additionally, we could show that the pattern of cluster
sizes in a geometric cluster analysis is more dependent on
the type of algorithm used for the clustering than on varia-
tions in the data set under study. The common-nearest-
neighbor algorithm, for instance, clearly splits the data set
into a large number of very small clusters and singletons,
which we classified as unstructured data, and small number
of rather large clusters. The neighbor algorithm shows a
similar pattern, although, here, the clusters continuously de-
crease in size and the distinction between unstructured and
structured data is not quite as obvious. The K-medoids algo-
rithm, on the other hand, partitions a data set into k approxi-
mately uniformly sized clusters—none of which represents
the group of unstructured data recovered by the former two
algorithms.

Of the three geometric cluster algorithms, the common-
nearest-neighbor algorithm is the most robust with respect to
variation in the input parameters and variation in the distance
measure. Its cluster definition is hardly affected by these
changes, only the resolution changes: a large cluster in one
partition of the data set can be split up into smaller cluster in
another partition. In the neighbor algorithm, only the first
and largest cluster, which represents the folded state, is reli-
ably recognized independent of the distance cutoff c and the
underlying atom set. For the K-medoids algorithm, we only
presented results for various initializations, but not for a
variation in the input parameter k or the underlying atom set
because already for this change the cluster results differed
considerably. Although the overlap pattern between the clus-
ters of different initializations were rather complicated, the
two largest clusters with �7400 and �2500 members

074110-14 Keller, Daura, and van Gunsteren J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

were—to a substantial degree—preserved. In one of the ini-
tializations, the largest cluster was, however, split into two
clusters, which is in accordance with a trait of this algorithm
as revealed by the test case.

Finally, we partitioned the data set into metastable states
using a kinetic cluster algorithm and compared the results to
the �geometric� clusters. Of all three geometric cluster algo-
rithms the common-nearest-neighbor algorithm shows the
clearest overlap pattern with the kinetic cluster results. It
clearly recognized the folded state �metastable state 5�, meta-
stable state 4, and—to a lesser degree—metastable state 3.
However, it characterized many data points which were as-
signed to metastable states by the kinetic cluster algorithm as
unstructured data which could be explained by the “splitting
effect” we observed in the test cases. The neighbor algorithm
is capable of identifying the folded state and—to a certain
extent—metastable states 4 and 3 but fails to cleanly separate
the latter two states from each other. Similar to the common-
nearest-neighbor algorithm, it does not recognize metastable
states 1 and 2. For the K-medoids algorithm, none of the
clusters could be matched unambiguously to the metastable
state. The largest cluster, however, has significant overlap
with the metastable state 5 so that it approximately corre-
sponds to the folded state. In summary, if geometric cluster
algorithms are to be used to identify metastable states, the
results ought to be interpreted with caution since the overlap
between the set of structures in a given metastable state and
the set of structures in the corresponding geometric cluster is
often only approximate. The data suggest avoiding the use of
the K-medoids algorithm. The neighbor algorithm performs
better by consistently identifying correctly the most popu-
lated cluster. Both algorithms do not provide a useful repre-
sentation of the underlying dynamics. They can be used,
though, as a tool for discretization of the conformational
space, for example, for the construction of microstates or for
a determination of overlap between two ensembles. The
common-nearest-neighbor algorithm performs significantly
better than the other two. Yet it does not yield a perfect
representation of the underlying dynamics in the conforma-
tional space.

ACKNOWLEDGMENTS

Financial support by the National Centre of Competence
in Research �NCCR� �Structural Biology� of the Swiss Na-
tional Science Foundation �SNSF� is gratefully acknowl-
edged. X.D. acknowledges funding from the Spanish
MICINN/FEDER �Grant No. BIO2007-62954�.

APPENDIX: PSEUDOCODE FOR THE GEOMETRIC
CLUSTER ALGORITHMS

1. Neighbor algorithm

The neighbor algorithm has one input parameter—the
distance cutoff c—and is composed of the following steps.

�1� Construct the list of nearest neighbors from the pool of
data points that have not been assigned to a cluster yet.

�2� Loop over all data points in this pool.

• Find the data point with the highest number of neigh-
bors within c.

�3� This data point is the medoid of the current cluster.
�4� Add all of its neighbors to the current cluster.
�5� Add the current cluster to the list of clusters and re-

move its members from the pool of unassigned data
points

�6� Repeat steps �1�–�5� until all data points have been as-
signed to a cluster.

2. K-medoids algorithm

The K-medoids algorithm has one input parameter—the
number of clusters k—and is composed of the following
steps.

�1� Choose k data points randomly—they are the first me-
doids.

�2� Assign all other data points to the cluster whose me-
doid is closest.

�3� Recompute the medoids: in each cluster, set the data
point which has the lowest distance to all other cluster
members as the new medoid

�4� Recompute the cluster membership: Assign all other
data points to the cluster whose medoid is closest.

�5� Repeat steps �3� and �4� until the cluster assignment
does not change anymore or until a maximum number
of iterations is reached.

1 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids �Oxford
University Press, New York, 1989�.

2 O. M. Becker, Proteins 27, 213 �1997�.
3 D. Chema and A. Goldblum, J. Chem. Inf. Comput. Sci. 43, 208 �2003�.
4 X. Daura, W. F. van Gunsteren, and A. E. Mark, Proteins 34, 269 �1999�.
5 A. Glättli, D. Seebach, and W. F. van Gunsteren, Helv. Chim. Acta 87,
2487 �2004�.

6 X. Daura, B. Jaun, D. Seebach, W. F. van Gunsteren, and A. E. Mark, J.
Mol. Biol. 280, 925 �1998�.

7 D. Trzesniak, R. D. Lins, and W. F. van Gunsteren, Proteins: Struct.,
Funct., Bioinf. 65, 136 �2006�.

8 J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, and W. C. Swope, J.
Chem. Phys. 126, 155101 �2007�.

9 F. Noé, I. Horenko, C. Schütte, and J. C. Smith, J. Chem. Phys. 126,
155102 �2007�.

10 S. Muff and A. Caflisch, Proteins: Struct., Funct., Bioinf. 70, 1185
�2008�.

11 W. Huisinga, C. Best, R. Roitzsch, C. Schütte, and F. Cordes, J. Comput.
Chem. 20, 1760 �1999�.

12 P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte, Linear Algebr.
Appl. 315, 39 �2000�.

13 P. S. Shenkin and D. Q. McDonald, J. Comput. Chem. 15, 899 �1994�.
14 G. M. Downs and J. M. Barnard, Reviews in Computational Chemistry

�Wiley, New York, 2002�, Vol. 18, pp. 1–40.
15 J. Y. Shao, S. W. Tanner, N. Thompson, and T. E. Cheatham, J. Chem.

Theory Comput. 3, 2312 �2007�.
16 R. A. Jarvis and E. A. Patrick, IEEE Trans. Comput. C-22, 1025 �1973�.
17 See supplementary material at 10.1063/1.3301140 for an illustration of

the transformation of a sample transition matrix T to the corresponding
coarse-grained transition matrix Tcg.

18 W. C. Swope, J. W. Pitera, F. Suits, M. Pitman, M. Eleftheriou, B. G.
Fitch, R. S. Germain, A. Rayshubski, T. J. C. Ward, Y. Zhestkov, and R.
Zhou, J. Phys. Chem. B 108, 6582 �2004�.

19 J. D. Chodera, W. C. Swope, J. W. Pitera, and K. A. Dill, Multiscale
Model. Simul. 5, 1214 �2006�.

20 C. H. Jensen, D. Nerukh, and R. C. Glen, J. Chem. Phys. 128, 115107

074110-15 Comparing cluster algorithms for MD data J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1002/(SICI)1097-0134(199702)27:2<213::AID-PROT8>3.0.CO;2-G
http://dx.doi.org/10.1021/ci0255735
http://dx.doi.org/10.1002/(SICI)1097-0134(19990215)34:3<269::AID-PROT1>3.0.CO;2-3
http://dx.doi.org/10.1002/hlca.200490223
http://dx.doi.org/10.1006/jmbi.1998.1885
http://dx.doi.org/10.1006/jmbi.1998.1885
http://dx.doi.org/10.1002/prot.21034
http://dx.doi.org/10.1002/prot.21034
http://dx.doi.org/10.1063/1.2714538
http://dx.doi.org/10.1063/1.2714538
http://dx.doi.org/10.1063/1.2714539
http://dx.doi.org/10.1002/prot.21565
http://dx.doi.org/10.1002/(SICI)1096-987X(199912)20:16<1760::AID-JCC8>3.0.CO;2-2
http://dx.doi.org/10.1002/(SICI)1096-987X(199912)20:16<1760::AID-JCC8>3.0.CO;2-2
http://dx.doi.org/10.1016/S0024-3795(00)00095-1
http://dx.doi.org/10.1016/S0024-3795(00)00095-1
http://dx.doi.org/10.1002/jcc.540150811
http://dx.doi.org/10.1021/ct700119m
http://dx.doi.org/10.1021/ct700119m
http://dx.doi.org/10.1109/T-C.1973.223640
10.1063/1.3301140
http://dx.doi.org/10.1021/jp037422q
http://dx.doi.org/10.1137/06065146X
http://dx.doi.org/10.1137/06065146X
http://dx.doi.org/10.1063/1.2838980

�2008�.
21 S. P. Elmer, S. Park, and V. S. Pande, J. Chem. Phys. 123, 114903

�2005�.
22 F. Cordes, C. Weber, and J. Schmidt-Ehrenberg, ZIB Report No. 02-40,

2002.
23 N.-V. Buchete and G. Hummer, J. Phys. Chem. B 112, 6057 �2008�.
24 W. C. Swope, J. W. Pitera, and F. Suits, J. Phys. Chem. B 108, 6571

�2004�.
25 R. Boned, W. F. van Gunsteren, and X. Daura, Chem.-Eur. J. 14, 5039

�2008�.

26 W. F. van Gunsteren, S. R. Billeter, A. A. Eising et al., Biomolecular
Simulation: The GROMOS96 Manual and User Guide �vdf Hochschul-
verlag AG an der ETH Zürich and BIOMOS b.v., Zürich, Groningen,
1996�.

27 J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23,
327 �1977�.

28 H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Di Nola,
and J. R. Haak, J. Chem. Phys. 81, 3684 �1984�.

29 Y. Li, J. Chem. Inf. Model. 46, 1742 �2006�.

074110-16 Keller, Daura, and van Gunsteren J. Chem. Phys. 132, 074110 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2008230
http://dx.doi.org/10.1021/jp0761665
http://dx.doi.org/10.1021/jp037421y
http://dx.doi.org/10.1002/chem.200701380
http://dx.doi.org/10.1016/0021-9991(77)90098-5
http://dx.doi.org/10.1063/1.448118
http://dx.doi.org/10.1021/ci050463u

