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Cytotoxic proteins have a wide applicability in human
therapies, especially in those conditions that require ef-
ficient and selective cell killing, such as cancer [1].
Chlorotoxin (CTX) is a small (4 kDa) basic peptide from
the venom of the yellow scorpion Leiurus quinquestriatus
[2], which blocks small-conductance chloride channels
[3] thus paralyzing the scorpion prey. Being not ex-
tremely potent as a cytotoxin (for instance when com-
pared with ribosome-inactivating proteins), it has gained
interest as a targeting agent, as the peptide shows a pre-
ferential binding to glioma cells mediated by the cell
surface matrix metalloproteinase-2 (MMP-2) and the
annexin-2. The expression of these proteins is increased
in gliomas and other cancer cell types [4]. Upon exposure,
CTX blocks the chloride channel activity but it also in-
hibits and downregulates MMP-2 [5], hampering the
glioma tissue migration and invasion potency and in-
hibiting the metastasis [6]. Despite the efforts to develop
chlorotoxin-derivatives and analogues that may enhance
the cytotoxic effect of the natural peptide, the most pro-
mising strategy to improve patient mean survival time
appears to be the use of chlorotoxin as a targeting agent
for the delivery of anti-tumor agents. In this context, CTX
has been explored in drug delivery as a component of
drug formulations that have entered in clinical trials or
are already FDA-approved [7]. Indeed, CTX has been

largely explored as a partner in drug conjugates [8] or in
form of fusion proteins [9] for the treatment and diag-
nosis of gliomas and other malignant tumors.

Recently, we have developed a protein engineering
platform based on functional recruitment [10] to promote
the self-assembly of reporter proteins such as the green
fluorescent protein (GFP) [11], and therapeutic proteins
such as pro-apoptotic factors [12] or microbial [13] and
plant toxins [14] in form of therapeutic or theranostic
nanoparticles [15]. These category of constructs, based on
the fusion of N-terminal cationic stretches [16], form
fully functional non-amyloid nanoparticles (ranging from
~10 to 60 nm) [17], that are highly stable upon in vivo
administration and show a proper biodistribution and
accumulation in tumoral tissues [15,18]. Lacking natural
cell-targeting properties, these constructs have been ge-
netically empowered to bind CXCR4" cells by the addi-
tion of the CXCR4-binding peptide T22 [19]. We were
interested in knowing how a protein-only nanostructured
version of CTX would keep the cell binding and inter-
nalization abilities of this peptide.

In this context, we designed the modular protein CTX-
GFP-H6 (Fig. 1; see all used methods in the Supple-
mentary information). Being cationic, CTX was expected
to act as an architectonic tag in combination with the
carboxy terminal histidine tail. In addition, we were in-
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Figure 1 Modular organization of CTX-based building blocks and nanoparticle characterization. (a) Schematic representation of the fusion proteins
showing the amino acid sequences, where CTX (green) is placed at the amino termini and a hexahistidine tail (H6, blue) at the carboxy termini. Linker
regions (purple) were placed in both cases between CTX and GFP (grey), to ensure fluorescence emission of the fusion protein. A cationic (red) region
was inserted in CTX-KRKRK-GFP-H6 downstream the CTX. Siding amino acid sequences, we show the Comassie blue staining of proteins upon
elution from affinity chromatography and polyacrylamide gel electrophoresis. Relevant molecular weight markers are indicated. At the bottom, the
molecular weights of the whole constructs as determined by matrix-assisted laser desorption/ ionization time of flight mass spectrometry. (b) Field
emission scanning electron microscopy images of purified protein, showing their nanoarchitecture. Particles were diluted in two buffers, in which
nanoparticles were tested for stability, namely carbonate buffer (C) and carbonate buffer plus 333 mmol L™ NaCl (C+S). Bar size is 20 nm in all
panels. (c) Dynamic light scattering plots showing the hydrodynamic size of nanoparticles. The peak value and the polydispersion index (Pdi) are
indicated. Determinations were done on the material dissolved in buffer C and C+S. (d) The hydrodynamic size of the particles in these buffers was
also determined in presence of 10% BSA and in Optipro cell culture medium. SDS (at 1%), that promotes the disassembling of protein-only
nanoparticles was alternatively added to the buffer to identify the size of the building blocks. The size of the parental GFP-H6 is also indicated in nm.
Untreated nanoparticles are shown by coloured plots. All the experiments were performed at pH 8. The peak value of the samples in SDS, BSA and
Optipro are specified over the respective plots.
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terested in investigating whether CTX can retain its
natural biological activities as a targeting agent in such a
macromolecular organization. Since the cationic char-
acteristic of CTX is only moderate, we generated the al-
ternative fusion CTX-KRKRK-GFP-H6, in which
additional cationic residues were inserted between CTX
and GFP (Fig. 1a), to favour nanoparticle formation. Such
strategy was previously observed as useful to promote
oligomerization of blood-brain-barrier (BBB) crossing
peptides as brain-targeted, protein-only nanoparticles
[20]. These two CTX-containing proteins were produced
and stored in carbonate buffer, which had been pre-
viously shown to be optimal for the stability of self-as-
sembling protein nanoparticles in cell cultures [13]. We
also tested two salt concentrations, as the ionic strength
might have a significant role in nanoparticle formation
[18]. As observed in the inset (Fig. 1a), both proteins were
produced in bacteria as a single molecular species of the
expected molecular mass, and spontaneously assembling
as regular nanoparticles of ~12 nm (Fig. 1b, c). The ad-
dition of sodium dodecyl sulphate (SDS), that promotes
the disassembly of protein-only nanoparticles, revealed
the actual size of the building blocks (around 3.8-5 nm,
probably protein monomers and/or dimers), very similar
to that of the parental GFP-H6 (5.4 nm, probably dimers,
Fig. 1d). The salt content did not have any detectable
impact on the particle size and stability but the buffer
with salt seemed to promote or increase nanoparticle
density or amount (Fig. 1b, c). A rich culture media such
as Optipro did not show any significant impact on the
size of the materials, while 10% bovine serum albumin
(BSA) decreased the particle size, probably by slightly
destabilizing protein-protein contacts without inducing
their full disassembling (Fig. 1d). The resulting nano-
particles were fully fluorescent, with specific emission
values of 2,550.6 + 2.8 units/ug and 2,027.8 * 8.1 units/pg
for CTX-GFP-H6 and CTX-KRKRK-GFP-H6 respec-
tively (not shown). Such intrinsic fluorescence emission
allowed the monitoring of the materials in subsequent
assays in cell cultures.

The spontaneous self-assembling of the engineered
CTX, in both versions, prompted us to further investigate
whether the toxin, in such oligomeric form, could med-
iate cell binding and internalization. Two cell lines pre-
viously identified as targets for CTX, namely Hela
(overexpressing annexin-2) and U87MG (overexpressing
MMP2) [21-24], were selected to examine cell penetr-
ability of the nanoconstructs, using the intrinsic green
fluorescence as a monitoring tool. As observed (Fig. 2a),
CTX-KRKRK-GFP-H6 nanoparticles were much more

894 © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

efficient than CTX-GFP-H6 in cell internalization, in
both cell lines. Moreover, regarding to the CTX-KRKRK-
GFP-H6 protein version, a high salt content significantly
improved cell penetration of the material, in particular
when observing the uptake in U87MG cultures. In this
cell line, penetrability of the protein nanoparticles was
globally much higher than in HeLa cell line.

To ensure that CTX, in form of nanoparticles, had not
lost its cell targeting activities, we explored the selectivity
of cell penetrability by inhibiting annexin-2 binding
during cell interaction. As observed (Fig. 2b), cell uptake
in HeLa cells was significantly reduced by both a
monoclonal antibody and a polyclonal serum against the
cell surface protein acting as a CTX receptor. Since the
antibodies acted over the penetration of both proteins in
both buffers, we deduced that both the cationic stretch
added to CTX-KRKRK-GFP-H6 and the high salt content
enhanced the penetrability of the protein (Fig. 2a) by a
receptor-dependent mechanism (Fig. 2b). Both cell pe-
netrability and receptor specificity were observed at levels
comparable to those shown by T22-GFP-H6 (Fig. 2c).
This protein contains the peptide T22 that selectively and
uniquely binds the cell surface cytokine receptor CXCR4,
expressed in HeLa cells [19]. In that case, inhibition of
cell uptake by the CXCR4 antagonist AMD3100 [25] was
more effective than the mediated by the anti-annexin-2
antibodies over CTX-carrying constructs probably be-
cause the unique target of T22 compared to the dual
binding sites of CTX. On the other hand, GFP-H6 was
unable to penetrate cultured cells (Fig. 2c), supporting
again the role of CTX in the penetrability of the nano-
particles.

At this stage, we determined the viability of cells ex-
posed to CTX nanoparticles. Although classified as a
toxin, chlorotoxin has displayed no obvious cytoxicity
when administered to humans, which is important for
drug development. Indeed, biological activities of chlor-
otoxin are mainly related with targeting ability, inhibition
of migration and invasion of glioma cells and also, with
antiangiogenic properties [27].

Unexpectedly (Fig. 3), the nanostructured CTX-GFP-
He6 had a significant cytotoxic impact on both lines, being
the CTX-KRKRK-GFP-H6 version more cytotoxic than
its counterpart CTX-GFP-H6, and U87MG cells more
sensitive than HeLa. CTX-GFP-H6, when added to
0.1 umol L', had a surprising but robust positive impact
on cell viability, the number of viable cells reaching 120%
of the control samples. This fact was not observed in
U87MG cells (Fig. 3b), in which cell death was only
moderate, dose-independent, protein-independent, al-

June 2019 | Vol.62 No.6
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Figure 2 Cell penetrability of CTX-based nanoparticles. (a) Internalized nanoparticles in two alternative cell lines, namely HeLa and U87MG cells,
24 h after exposure to different protein amounts. Intracellular fluorescence was corrected by the specific emission to result in data representative of
protein amounts. Cells were submitted to a harsh trypsin treatment before measurements to remove externally attached protein as described [26].
Nanoparticles were administered as dissolved in either C or C+S buffer. Y axis scales might be not precisely comparable. (b) Selective antibody-
mediated inhibition of nanoparticle uptake in HeLa cells, by an anti-annexin-2 monoclonal antibody (mAb) and polyclonal antibody (pAb). The
statistical analysis was performed using an ANOVA Tukey’s multiple comparisons test (*p<0.05; **p<0.01). Normality was confirmed by Shapiro-
Wilk W where p > 0.05. Comparisons were done always with samples without antibody. (c) Internalization of the related CXCR4-binding T22-GFP-
H6 nanoparticles in (CXCR4") HeLa cells, and inhibition by the CXCR4 antagonist AMD3100 at an excess molar ratio 10:1. The parental GFP-H6
protein is unable to enter cultured cells. All the experiments using HeLa cells were performed at pH 7.0-7.4, and those using U87MG cells at pH 6.8
7.2.

though significantly modulated by the salt content of the  annexin-2 is sterically blocked by both a monoclonal
protein storage buffer. The toxicity of CTX was milder antibody and an anti-annexin-2 sera (Fig. 2b). The CTX
than that of the potent microbial toxin PE24 from Pseu-  version that contains some additional cationic residues
domonas aeruginosa [13] (Fig. 3c), while the CTX-less = (KRKRK, Fig. 1) inserted between the targeting peptide
GFP-H6 showed no effect on cultured cells (Fig. 3c). and GFP, shows an enhanced cell penetrability when

In summary, we have constructed two recombinant compared with the plain CTX fusion (Fig. 2a). Since the
versions of CTX, that fused to a His-tagged GFP assemble  uptake of the cationic construct is still receptor-mediated
as stable, fully fluorescent protein nanoparticles of regular ~ (Fig. 2b), it cannot be merely attributed to a higher
size (12 nm, Fig. 1). In this oligomeric form, the protein  electrostatic affinity of the nanoparticles to the cell
retains its ability to penetrate target cells, as determined = membrane. In fact, it has been reported that single amino
here in two cell lines that display suitable receptors for  acid substitutions (Lys to Arg) that enhance the cationic
CTX, namely HeLa and U87MG [21,23,24,28]. The cell  nature of CTX result in a more stable version of the
uptake is receptor-dependent, as it is inhibited when  peptide and in an enhanced cell penetrability, probably

June 2019 | Vol.62 No.6 © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 895
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Figure 3 Cell viability upon exposure to CTX-based nanoparticles. HeLa cells (a) and U87MG cells (b) were exposed to protein nanoparticles for
72 h. Nanoparticles were administered as dissolved in either C or C+S buffer. The statistical analysis was performed using an ANOVA Tukey’s
multiple comparisons test (¥p<0.05; ¥*p<0.01). Normality was confirmed by Shapiro-Wilk W where p>0.05. Symbols at the top of the bars indicate
the comparison with the control (100%). Symbols at the left of the bars indicate comparisons between protein pairs, indicated by white linkers. (c)
HelLa cell viability upon exposure to control, non-toxic GFP-H6 protein and cytotoxic T22-PE24-H6 nanoparticles. All the experiments using HeLa

cells were performed at pH 7.0-7.4, and those using U87MG cells at pH 6.8-7.2.

associated to such higher structural stability [7]. Inter-
estingly, the presence of salt dramatically enhances up to
three fold the already improved cell penetrability of the
cationic CTX version (Fig. 2a) that is accompanied by a
slight tendency to an increased cytotoxicity in vitro, at
least in HeLa cells (Fig. 3).

Importantly, the nanostructured version of CTX retains
the tumor cell-targeting properties of this protein, with
high cell level of specificity, and excellent cell penetr-
ability. In addition, a mild but significant cytotoxicity is
associated to the constructs. The cell killing properties of
the CTX nanoparticles appear to slightly be cell line de-
pendent, and also influenced by the engineered cationic
segments and the salt content of the media (Fig. 3). In this
regard, both CTX nanoparticle versions developed here
appear as promising biocompatible and biodegradable
carrier systems to load anticancer drugs or therapeutic
proteins for targeted therapy of glioma. However, in ad-
dition, the unexpected dual role of CTX as driver and cell
killing agent is highly promising for a true functional
recruitment in the generation of nanostructured, multi-
functional and smart therapeutics [10]. This is also in the
line of designing chemically homogeneous vehicle-free
drugs, at the nanoscale, that is now an emerging and
appealing concept in the context of innovative tumor
targeted drugs [29].
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