
de Pinho Favaro et al. Microbial Cell Factories          (2022) 21:203  
https://doi.org/10.1186/s12934-022-01929-8

REVIEW

Recombinant vaccines in 2022: a perspective 
from the cell factory
Marianna Teixeira de Pinho Favaro1,2†, Jan Atienza‑Garriga1,3,4†, Carlos Martínez‑Torró1,3,4†, Eloi Parladé1,3,4†, 
Esther Vázquez1,3,4*, José Luis Corchero3,1,4*, Neus Ferrer‑Miralles1,3,4* and Antonio Villaverde1,3,4* 

Abstract 

The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North 
America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have glob‑
ally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based 
on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiologi‑
cal needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed 
and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of 
conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant 
proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and 
an important margin for further development. In the 80’s, the first vaccination attempts with recombinant vaccines 
consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more 
complex formulations of recombinant antigens with particular geometries are progressively generated and explored 
in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The 
diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory 
types, through relevant examples of prototypes under development as well as already approved products.
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Introduction
Immune protection against infectious diseases is a main 
goal in human and animal health [1, 2]. The current vac-
cine narrative is flooded by COVID-19, for which an 
extremely rapid vaccination response has been impera-
tive at global scale. Nowadays, vaccination has not only 

taken a dominant rule in the scientific literature but fea-
tures of specific immunization strategies and vaccine-
induced immune responses are also finely dissected and 
overtly discussed in the media. This situation has stressed 
the challenges posed by emerging viral pandemics and 
more generically, the transversal needs associated to vac-
cine development, irrespective of the involved pathogen-
host pair [2, 3]. The usual failing in incorporating the 
whole infectious agent in a safe and protective vaccine 
formulation, either in inactivated or attenuated versions, 
pushes towards considering recombinant subunit vac-
cines [4, 5]. This is also supported by the inherent bio-
logical risks associated to bottlenecks in the large-scale 
chemical inactivation of pathogens, either bacterial cells 
or virus particles [6, 7], or to the potential of reverting to 
virulence in the case of attenuated strains [7–9]. Also, the 
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manipulation of subunit vaccines can dismiss the use of 
P3 laboratories and high-biosafety facilities.

Being and old concept [10–12], subunit vaccines are 
based on particularly immunodominant antigens or 
cocktails of selected antigens purified from the pathogen. 
The main challenges in designing usable subunit vaccines 
are not only linked to their biological efficacy but also 
to the fastness, cost-effectiveness, biosafety issues and 
transversal nature of the process design and large-scale 
production. Therefore, the industrial-scale production of 
the relevant antigens is desired over their extraction from 
natural sources, often costly or even unfeasible. Impor-
tantly, the geometry of the selected antigen presentation 
might be critical [13–15], especially in anti-viral vaccines 
[16]. Then, virus-like particles (VLPs) have been achieved 
in different pathogenic and non-pathogenic viruses from 
more than 35 families through the spontaneous self-
assembling of recombinant versions of capsid proteins, 
upon strong expression of the encoded genes [17]. VLPs 
have been developed as vaccines but also as carriers for 
drugs or imaging agents, proving the enormous potential 
of such technology in different fields of precision nano-
medicines [18]. In immunization, VLP-based vaccines or 
vaccine prototypes have been generically successful prob-
ably because of the virus-like oligomeric presentation of 
the antigens [19]. However, so far, VLPs have been only 
approved for a limited number of diseases (Table  1). In 
a step further and following the concept of multiple and 
repetitive antigen presentation, vaccination platforms, 
namely versatile antigen presentation systems with mod-
ular or interchangeable elements are highly desired and 
pointed out as main goals for development [20, 21]. In 
the search of such transversal vaccine platforms, the mul-
timeric antigen display on nanostructured materials has 
been repeatedly noted to favor, improve and enhance the 
protective response [22, 23]. Such nanoscale multimeric 
presentation mimics natural structural features of viral 
particles, what has prompted the development of univer-
sal antigen presentation systems in form of nanoparticles 
(nanovaccines) [24–27]. Because the specific and promis-
ing features of nanoscale vaccines, this strategy is given, 
as a global, a special attention in the next section.

This increase of the structural complexity in the formu-
lation of subunit vaccines contrasts with the earlier single 
soluble antigen approach that initially arose linked to the 
recombinant DNA technologies at the late 70’s. Associ-
ated to vaccine formulation, stability during storage and 
transportation and the suitability of a vaccine product for 
mass administration need special attention [28]. Novel 
adjuvants and formulation strategies are being explored 
to allow the simplest manipulation of the vaccine doses 
[25, 29], especially at large scale administration programs 
in which thermal stability is particularly demanded [30].

In the context of emerging vaccination technologies, 
such as those based on expressible DNA or mRNA, 
recombinant antigens show remarkable interest. Recom-
binant proteins have been used as drugs for decades 
[31–34] and their intrinsic clinical safety and industrial 
scalability in their production have been largely demon-
strated. In addition, the functional and structural ver-
satility of polypeptides allow designing presentations as 
multimeric, nanoscale materials in which self-assem-
bling is achieved through several alternative approaches 
[35–43]. This set of properties make them excellent can-
didates for new generation approaches in contemporary 
vaccinology. In addition, novel natural or engineered cell 
factories with appealing properties have been incorpo-
rated in the last decades to the biofabrication of protein 
drugs [44], beyond the more classical bacterial and yeast 
species and mammalian and insect cells. In the present 
review, we discuss the contemporary approaches in the 
biological fabrication of recombinant subunit vaccines 
from alternative cell factories and how these antigens 
are adapted to comply with the requirements for vaccine 
effectiveness regarding stability, formulation and multi-
valent nanoscale presentation.

Nanovaccines
The immunogenicity of plain subunit vaccines, that is, 
non-oligomeric antigens, is often moderate. This fact is 
usually counteracted by combining proteins to immu-
nostimulant molecules (adjuvants) and nanoparticles, 
which can also act as immune potentiators [45]. In the 
last decades, proteins have been displayed in multi-
ple copies on a plethora of nanoparticle types, includ-
ing metals, polymers, lipids, and others [13], aiming to 
increase half-life, promote a deposit effect, or to specifi-
cally activate certain immune cells [46]. However, the use 
of protein-only nanovaccines resulting from recombinant 
protein self-assembly has been also in use for a long time 
and represents a way to suit the requirements of an ideal 
vaccine formulation (Fig.  1). Also, it avoids the use of 
non-protein nanoparticles as carriers, what might repre-
sent an additional source of concern because of potential 
side toxicities in the case of xenobiotic, recalcitrant or 
poorly biocompatible materials [47–50].

The dedicated study of nano-sized oligomeric pro-
tein vaccines emerged with the development of VLPs, in 
which the multimerization of antigens seems to be essen-
tial for eliciting proper immune responses. The side-by-
side presentation of antigens is recognized by immune 
cells as a pathogen-associated molecular pattern (PAMP) 
[13], which promotes the activation of B-cell receptors 
in a more efficient way since their cross-linking is a key 
and early step to activate B cells [51]. While the dense 
arrangement of antigens interacts with B-cell receptors, 
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nanovaccines ranging from 20 to 200  nm in size are 
better drained to lymph nodes and thus allow a better 
uptake by antigen-presenting cells (APCs), which exem-
plifies how size and geometry of the protein assembly 
contribute to the immune responses [13]. The success of 
the VLP platform is evident by its presence in the mar-
ket, with two formulations already being commercialized 
against Human Papilloma Virus (HPV) [52, 53] and two 
others against Hepatitis B Virus (HBV) [54, 55] (Table 1).

VLPs intended as immunogens for vaccination can 
be attained by producing the capsid of viral pathogens 
as recombinant proteins that thus self-assemble as an 
empty, viral-mimicking particle. In the case of proteins 

without the capacity to self-assemble, several tools can 
be used to modify scaffold, irrelevant VLPs to incorpo-
rate foreign proteins, such as genetic fusion of the anti-
gen to coat proteins with the ability to self-assemble, or 
by conjugation of antigens to the scaffold through a vari-
ety of both covalent and non-covalent strategies [56]. A 
very promising and widely used strategy, named SpyTag/
SpyCatcher, functionalizes a VLP expressing SpyCatcher 
sequence to covalently bind to recombinant antigens 
fused to a SpyTag sequence, thus allowing the decora-
tion of VLPs by simply mixing them with the modified 
antigen [57]. This platform was evaluated against differ-
ent pathogens and was recently applied to SARS-CoV-2, 

Table 1  Main recombinant, subunit or oligomeric vaccines approved for human or veterinary use

* Only approved in China; ** Only approved in Canada; VLP, virus-like particle; NP, nanoparticle; fHbp, lipidated factor H binding protein; gE, glycoprotein E; n.s., not 
specified; LiESP, L. infantum Excreted-Secreted protein, BVES, baculovirus expression system

Pathogen Antigen Names Year of 1st 
Approval (FDA/
EMA)

Production system Formulation

Human Hepatitis B virus Hepatitis B Surface 
antigen (HBsAg)

Engerix-B, Heplisav-B, 
Pediarix, HBVaxPRO, 
Recombivax, Twinrix, 
Vaxelis,
Heplisav-B

1986 Yeast (S. cerevisiae)
Yeast (H. Polymorpha)

VLPs

Papillomavirus L1 capsid protein Gardasil, Gardasil 9
Cervarix

2006
2009

Yeast (S. cerevisiae)
Insect cells-BVES

VLPs Adjuvanted

Hepatitis E virus ORF2 protein Hecolin 2012* E. coli VLPs

Influenza A & B virus Hemagglutinin (HA) Flublok, Flublok RIV4, 
Supemtek

2013 Insect cells-BVES NPs
No adjuvant

Neisseria meningitidis 
serogrup B

2 fHbp variants Trumenba 2014 E. coli No adjuvant

Malaria HBsAg + RTS chimera Mosquirix 2015 Yeast (S. cerevisiae) VLPs

Varicella Zoster virus Truncated gE Shingrix 2017 CHO cells Adjuvanted

SARS-CoV-2 Spike (S) protein Nuvaxovid 2021 Insect cells-BVES NPs

SARS-CoV-2 Spike protein Covifenz 2022** Plant (Nicothiana 
benthamiana)

VLPs

Swine A. pleuropneumoniae ApxII, TbpB, CysL, 
Om1A proteins

Pleurostar APP n.s n.s

Classical Swine Fever 
virus

E2 protein Porcilis Pesti,
Bayovac CSF E2

2000
Withdrawn

Insect cells-BVES Subunit
Adjuvanted

Porcine Circovirus 
Type 2

ORF-2 protein Ingelvac CircoFLEX,
Porcilis PCV,
Circogard,
Circumvent PCV

2008 Insect cells-BVES Fom VLPs Adjuvanted

Porcine parvovirus 
(PPV)

PPV 27a VP2 Reprocyc ParvoFLEX 2019 Insect cells-BVEs VLPs
Adjuvanted

Canine Borrelia burgdorferi OspA & C chimeric
OspA

Vanguard crLyme, 
Recombitek Lyme

n.s E. coli No adjuvant

Leishmania A2 different species Leish-Tec 2004 n.s Adjuvanted

Leishmania Chimeric Protein Q Letifend 2016 E. coli No adjuvant

Poultry Newcastle disease virus Hemagglutinin-neu‑
raminidase

Approved by USDA, 
not commercialized

2006 Plants (tobacco sus‑
pension cells)

Feline Feline leukemia virus P45 env. antigen Leucogen
Nobivac LeuFel

2009 E. coli Subunit
Adjuvanted

Equine Streptococcus equi CCE, mEq84, IdeE Strangvac 2021 E. coli Adjuvanted
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presenting encouraging results in pre-clinical trials [58]. 
In fact, the COVID-19 pandemics encouraged the expan-
sion of different platforms of nanovaccines being assessed 
in pre-clinical trials. In this scenario, a recombinant nan-
oparticle vaccine based on the Spike protein from SARS-
CoV-2 was developed by Novavax and it passed phase III 
clinical trials with 89.7% protection against infection [59], 
also showing cross-protection against antigenic variants 
[60]. Its approval represents an important step in the vac-
cinology against COVID-19 [61].

In light of all the potential advantages observed in the use 
of nanostructured subunit vaccines, a great deal of effort 
has been placed in the identification and development of 
alternative non-VLP strategies that allow self-assembly of 
antigens. Ferritin, for instance, is a popular platform which 
in different studies has been associated to an increased 
immune response towards the antigen, and lumazine syn-
thase is also extensively used, and often preferred to recruit 
more subunits in the assembly than ferritin [62]. Overall, 
different protein oligomerization tags and strategies have 
been explored and developed [63], including the straight-
forward use of poly-histidine tails, common as purifica-
tion tags, as self-assembling tools [40, 64, 65]. Despite the 
diversity of approaches, antigen assembly into a multi-
meric version consistently results in enhanced immune 
responses [66–70]. Altogether, nanovaccines represent an 
emerging field in the frontier between protein engineering 
and materials sciences. By combining the power and chal-
lenges of protein production in heterologous systems to the 
ones associated with nanoparticles, these tools provide an 

exciting opportunity to take subunit vaccines to the spot-
light in terms of efficiency and safety.

Approved recombinant vaccines
Many of the vaccines approved for clinical use still focus on 
using whole viruses or pathogen cells in conventional live 
or inactivated forms, being this fact particularly true for 
veterinary vaccines [71–73]. However, recombinant vac-
cines have gained interest as the application of recombi-
nant DNA technologies in vaccinology solved most of the 
problems posed by the classic strategy, as discussed above. 
Therefore, the trend in immunization is shifting towards 
the exploration of this technology, as demonstrated by 
the significant number of approved recombinant vaccines 
(Table  1, [74, 75]). Among them, nanoparticle (NP) and 
VLP versions abound in this list, following the multimeric 
presentation principles discussed in the previous section. 
Escherichia coli, a few yeast species, insect cells, mamma-
lian CHO cells and plant cells are the most common cell 
factories used for production, whose appealing properties 
and bottlenecks are highlighted and discussed in the next 
sections.

Most of these data are extracted from references [74, 75].

Conventional cell factories for recombinant 
vaccines
Bacteria
Bacteria are a straightforward choice to approach heter-
ologous protein expression through recombinant DNA 
technologies. Their high productivity paired with the 

Fig. 1  Principles of antigen engineering and formulation as nanovaccines. A The multimeric presentation of antigens, either as NPs or VLPs, 
enhances the protective immune response upon administration. B Non relevant NPs or VLPs can be used as scaffolds for the multiple presentation 
of antigens that are reluctant to oligomerization, either as genetic fusions of chemically coupled upon assembling of the scaffold protein
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significantly lower culture cost of this platform when 
compared to other expression systems are very appeal-
ing features for large-scale protein production. Unfor-
tunately, several issues inherent to the bacterial systems 
have hindered their adoption as preferred tools for 
recombinant vaccine production. These constraints 
revolve around the immunogenicity of residual bacterial 
components such as lipopolysaccharides (LPS) from the 
cell wall, or the inability to adequately fold complex pro-
teins or those that undergo post-translational modifica-
tions when produced in their natural sources.

Regarding the first issue, procedures for LPS removal 
from protein preparations are under continuous devel-
opment. In fact, these efforts have provided alternative 
methods for their generic and successful industrial appli-
cation to any protein produced in bacteria and intended 
for clinical applications, including vaccinology [76–78]. 
In contrast, insolubility of recombinant proteins and the 
consequent precipitation as cytoplasmic or periplasmic 
inclusion bodies have represented a more persistent bot-
tleneck in the biological fabrication of protein drugs in E. 
coli [79], reluctant to the generic application of most of 
the preventive metabolic strategies [80, 81]. This fact has 
limited the number of bacterial protein products trans-
ferred to the market, which are in fact those that natu-
rally, or with cost-effective post-production protocols, 
reach a conformation compatible with solubility while 
retaining the expected biological activity. Alternatively, 
since inclusion bodies might contain high proportions of 
folded protein species [82, 83], strategies for the straight-
forward use of these protein aggregates as a formula-
tion for recombinant antigens or immunomodulators 
are interesting and have offered intriguing data [84–87]. 
However, they have been in general discontinued. In 
addition, they face important regulatory issues because 
of their heterogeneous chemical composition [88].

E. coli stands as the most immediate host for recom-
binant protein production among suitable bacterial spe-
cies due to its fast growth rate, a broad repertoire of 
genetic tools and a wide array of different strains engi-
neered to solve most of the production challenges [89]. 
Accordingly, the three approved recombinant vaccines 
for human use that employ bacteria as the expression sys-
tem are produced in E. coli. These vaccines are Hecolin 
(Xiamen Innovax Biotech, approved in 2012 in China), 
Bexsero (Novartis, commercialized since 2013) and Cec-
olin (Xiamen Innovan Biotech, approved in 2019), which 
offer protection against Hepatitis E, Neisseria menin-
gitidis serogroup B and human papillomavirus 16 and 18, 
respectively (see Table 1). Outside of human application, 
there are other approved recombinant vaccines produced 
in E. coli prescribed to protect against canine, feline and 
equine pathogens, such as Borrelia burgdoferi (Vanguard 

crLyme, Recombitek Lyme), Leishmania (Letifend), 
Feline leukemia virus (Leucogen & Nobivac LeuFel) and 
Streptococcus equi (Strangvac) (see Table 1).

Although E. coli remains as the main expression sys-
tem for recombinant production in bacteria, there are 
many other bacterial species being adapted in parallel 
that offer unique traits and advantages as protein pro-
ducers. Among Gram negative bacteria, Pseudomonas 
fluorescens has been of particular interest for its non-
acetogenic nature and moderate oxygen needs, enabling 
a lax control over oxygen and glucose concentrations 
while still achieving good production yields [90]. In fact, 
there is a wide toolbox and strains available for recombi-
nant protein production that feature antibiotic-free selec-
tion or periplasmic protein expression [90–92]. To this 
date, two recombinant proteins produced in P. fluores-
cens have already been successful in eliciting protection 
against malaria and anthrax infections in mouse and rab-
bit models, respectively [93, 94]. Several other interesting 
gram-negative bacteria have been explored as potential 
options for expression systems, including Pseudomonas 
putida, Ralstonia eutropha, Burkholderia glumae and 
Acinetobacter sp., but broad host-range tools still need to 
be developed in terms of plasmid maintenance, plasmid 
transfer and secretion signaling [95].

Moreover, lactic acid bacteria and Bifidobacterium 
species are of particular interest due to their Gener-
ally Recognized as Safe (GRAS) status, as they do not 
require pre-market approval when used in the food 
industry. These bacteria have been massively employed 
by the industry and consequently, their engineering and 
scalability have been thoroughly explored. Based on the 
assumption of safety, the development of expression sys-
tems in several strains of such species has thrived as of 
lately. Many and diverse microbial antigens produced in 
or surface-displayed on lactic acid bacteria have been 
able to elicit significant immune and often protective 
responses [96–101]. These bacteria do not only serve as 
microbial cell factories [102, 103] but also as vaccine vec-
tors [103, 104], for orally and mucosally-administered 
formulations, as they are able to induce a potent immune 
response by expressing foreign antigens, while drawing a 
minimal response against themselves [105–107].

All in all, the use of bacteria as the expression system 
for vaccine production is trending upward, with three 
approved vaccines in the last ten years. Moreover, the 
engineering and further tailoring of endotoxin-free E. 
coli strains might resolve one of the major issues of this 
expression system [108]. On the other hand, the cur-
rently ongoing efforts to export the Campylobacter jejuni 
N-glycosylation system to E. coli [109–111] could repre-
sent a breakthrough in the production of antigenic pro-
teins for vaccination purposes in bacteria [110].
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Yeast
As it happens with other types of functional proteins, 
antigens intended for immunization might require natu-
ral post-translational modifications to follow a native 
folding and produce a 3D structure with proper epitope 
presentation, especially for those that are conformational 
rather than sequence-dependent [112–114]. Being good 
alternatives to bacteria and superior to them in solving 
some protein folding issues [115], yeasts are considered 
a useful system for the development of recombinant and 
unconventional vaccines for human and veterinary medi-
cine [116–118].

Several yeast species are commonly used for recombi-
nant protein production including Kluyveromyces lactis, 
Schizosaccharomyces pombe, Arxula adeninivorans, Yar-
rowia lipolytica, Hansenula polymorpha, Komagataella 
phaffii (also known as Pichia pastoris) and Saccharo-
myces cerevisiae [119]. From a metabolic point of view, 
these species can be categorized as methylotrophic and 
non-methylotrophic [120]. S. cerevisiae, the best-known 
member of the non-methylotrophic group, has provided 
important services in the bread and brewing industries 
for thousands of years. As a result of its nonpathogenic 
nature and lack of toxins, S. cerevisiae is one of the yeast 
expression systems most exploited to obtain biopharma-
ceutical products [31, 121–124]. It is also considered gen-
erally safe (GRAS) by the Food and Drug Administration 
(FDA) and an accepted food additive by the European 
Food Safety Authority (EFSA) [125]. However, major 
drawbacks include N-hyperglycosylation of proteins and 
low secretion efficiency. In fact, S. cerevisiae manno-
sylated glycoproteins are presumed to exhibit enhanced 
immunogenicity because they specifically interact with 
mannose-binding receptors found on professional anti-
gen-presenting cells such as dendritic cells and mac-
rophages [125].

In any case, genes involved in the hypermannosylation 
process have been identified in P. pastoris, and mutations 
in these genes can reduce the production of undesirable 
glycoforms [126]. Therefore, glycoproteins derived from 
P. pastoris can act as adjuvants. P. Pastoris is a methy-
lotrophic yeast that has proven to be an excellent host 
system for recombinant expression. In addition to being 
inexpensive, this yeast system is fast in terms of expres-
sion times, as well as in co-translational and posttran-
scriptional processing. The cultivation of this species 
in industrial bioreactors allows the production of large 
amounts of recombinant protein from high-density cell 
cultures [126].

Various viral proteins from hepatitis viruses [127], pap-
illomavirus [128], porcine circovirus [129] or influenza 
virus [130], among many others, have been produced 
in P. pastoris, either in the form of viruses like particles, 

purified protein, surface display or as a whole recombi-
nant yeast cell [118]. Different candidate vaccines based 
on antigens, toxins, or VLPs are currently under devel-
opment. Representative prototype examples are a subunit 
RBD vaccine against COVID-19 [131, 132], a CRM137 
subunit vaccine against Typhoid fever caused by Salmo-
nella enterica [133], a LipL32 subunit vaccine against 
leptosipirosis caused by Leptospira interrogans [134], a 
NS1-based VLP vaccine against Zika virus disease [135] 
and an HEV-VLP against hepatitis E [136].

Strain engineering (e.g., glycosylation) and pro-
cess engineering (e.g., continuous processing, alterna-
tive induction systems) will not only result in a greatly 
improved productivity of the P. pastoris system, but it is 
also expected that these changes will expand the range 
of available immunogens, including those currently 
only accessible through other expression methods. This 
improvement strategy considers the endpoint of applica-
tion before deciding how heterologous proteins are pro-
duced. Therefore, we can expect P. pastoris to become 
one of the first platforms of choice in the coming years 
as the biopharmaceutical application of this host system 
improves.

Insect cells
The insect cell-baculovirus expression system (BVES) is 
a robust platform that supports the production of differ-
ent protein formats [137]. The ability of insect cell lines to 
grow in suspension in serum-free medium and to reach 
high density conditions positions this system as one with 
interesting advantages for the production of immuni-
zation agents [138]. In addition, this system allows the 
introduction of several genes in the baculovirus genome 
backbone under control of the strong viral promoters 
[139] and the use of recombinant baculovirus as trans-
duction vectors for mammalian cells in the BacMam 
expression system [140]. However, even though insect 
cells BVES reproduces most of the post translational 
modifications of mammalian cells, the distinctive gly-
cosylation pattern results in the synthesis of asialylated 
glycoproteins [141]. Another drawback when compar-
ing with mammalian cell-based expression systems is 
the need to control and maintain the viral stock since the 
expression experiments are based on a batch procedure, 
and each infection regime implies the control of the cell 
culture but also the quantification of the viral suspension 
which is time consuming and expensive. Although this 
platform is considered more biosafe than the expression 
system based on mammalian cells, infectious agents with 
potential risk for human and animal health have been 
detected and need to be screened [142].

As in the mammalian expression system, the protein 
product can be accumulated intracellularly or sent to the 
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medium by the addition of optimized insect secretion 
signals in the recombinant gene [143]. However, more 
sophisticated protein presentations are obtained such as 
VLPs. These multiprotein structures can be isolated from 
the soluble cell fraction or from the medium when the 
membranous VLPs are budded [144–146].

The BEVS is well positioned in the vaccine area for vet-
erinary applications (Table  1). In fact, several products 
from this expression system have been approved by the 
EMA and FDA to fight against main viral pathogens of 
swine (African swine fever virus/ASFV, Porcine circovirus 
2/PCV-2 and Ungulate protoparvovirus 1/PPV) [147]. 
The composition of the vaccine products for ASFV is 
based on subunits of glycoprotein E2 of the outer enve-
lope of the virus (Procilis® Pesti and Bayovac CSF E2®) 
[148] while the ones for PCV-2 and PPV are VLPs of cap-
sid protein VP2 for PCV-2 (Ingelvac CircoFlex®, Porcilis® 
PCV, Circogard®, and Circumvent® PCV) [149–151], and 
the corresponding VP2 for PPV (Reprocyc® ParvoFLEX) 
[152]. The initial approvals of recombinant vaccines for 
veterinary use were based on subunits, moving to mul-
tiprotein complexes as VLPs. In fact, the vaccines based 
on protein subunits for circovirus have been withdrawn 
and only higher order protein complexes are keeping the 
authorization status after review (Table 1).

In the case of human vaccines, formulations based on 
protein nanoparticles (NPs) and VLPs have been recently 
approved. Cervarix® is a vaccine against two viruses of 
the Papillomaviridae family which are related to cancer 
and is formulated as VLPs formed by the spontaneous 
assembly of the L1 capsid protein of the corresponding 
viruses [153]. In the production of the bivalent vaccine, 
two independent infection processes are performed, each 
with a recombinant baculovirus with the corresponding 
cloned L1 gene. The VLPs are independently purified and 
mixed for the final formulation of the vaccine. This type 
of vaccine has also been obtained from yeast (Gardasil®) 
to include VLPs from type 16 and type 18 human pap-
illomaviruses, and is even formulated as a quadrivalent 
vaccine when VLPs of type 6 and type 11 human papil-
laviruses are added, after their production in separate 
fermentations [154]. Even when data on the pathogenic-
ity of other papillomaviruses has become available, Cer-
varix® has not been reformulated to increase the number 
of distinct VLPs. Menwhile, a new nonavalent formula-
tion of Gardasil® was approved including five more dis-
tinct virus VLPs in the Gardasil® 9 formulation [155]. 
In 2013, an alternative to egg-based vaccine for seasonal 
influenza infections, Flublok®, was approved. In this case, 
due to the antigenic drift of the seasonal flu viruses, it is 
necessary to review vaccine formulation every epidemic 
season for a trivalent vaccine of two seasonal virus of 
Influenza A virus and one seasonal virus of Influenza B 

virus [156]. In 2016, a quadrivalent version of Flublok® 
was approved to include VLPs of the haemagglutinin of a 
second seasonal virus of Influenza B virus to the trivalent 
formulation. Finally, a recombinant vaccine based on the 
spike protein (S) of SARS-CoV-2 (Nuvaxovid®) has been 
approved [157]. In this instance, the full-length S glyco-
protein self-assembles into trimeric complexes which 
organize into higher-order structures at the nanoscale.

Several strategies are being developed to improve the 
insect cells BVES including the humanization of the 
glycosylations pattern [158], the delay of the apopto-
sis process in infected cells [159], the optimization of 
the secretion pathway and the control of proteolysis 
[160] among others. Another interesting strategy that 
brings this expression system, close to the one based in 
mammalian cells, is the establishment of transient gene 
expression procedures or stable transgenic cell lines with 
the use of strong insect cell promoters [161, 162].

Therefore, the insect cell-BVES, is a flexible expres-
sion system platform which supports the production of 
complex heterologous proteins. The synthesized proteins 
adopt conformations compatible with the formation of 
higher-order complexes with potential for nanovaccine 
development. Further improvements to overcome the 
limitations of this expression system are being explored 
as of now, which could help to secure its positioning in 
the vaccine market.

Mammalian cells
Before the development of cell culture technologies, the 
few available viral vaccines, based on whole virus parti-
cles, were produced in animal systems such as calf skin 
(smallpox), rabbit spinal cord (rabies), mouse brain 
(Japanese encephalitis), or embryonated eggs (influenza 
and yellow fever viruses) [163]. Currently, embryonated 
eggs are still a main source of conventional, whole virus 
vaccines, especially for the seasonal flu [164]. However, 
the use of eggs for vaccine production poses a number 
of concerns regarding the risks of insufficient supply 
especially in case of epidemics and pandemics, time-
consuming procedures, increased manufacturing costs 
and the potential allergic responses to eggs components 
[165]. Cell culture technology appeared as an approach 
to overcome limitations of egg-based vaccine production 
and it was progressively incorporated. The development 
of the polio vaccine in 1954 by Jonas Salk is considered a 
milestone in the field of vaccination. Later, a vaccine for 
rubella was obtained from cultured human cells by Stan-
ley Plotkin at the Wistar Institute (Philadelphia). There, 
Plotkin developed a cell line (named WI-38) from lung 
cells of an aborted fetus, in which many viruses, including 
rubella virus, could be grown. Since their establishment 
in the 1960s, cell lines WI-38 and MRC-5 (also initiated 
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from fetal lung cells) have been used to produce several 
viral vaccines based on infection, whole virus recovery 
and further attenuation or inactivation, like those for 
hepatitis A (VAQTA, Merck and Havrix/GlaxoSmith-
Kline), rubella (MERUVAX II, Merck, and ProQuad/
Merck), chickenpox (Varivax, Merck and ProQuad/
Merck), shingles (zoster) (Zostavax, Merck), oral vaccine 
against adenovirus type 4 and type 7 (Barr Labs), and 
rabies vaccine (IMOVAX, Sanofi Pasteur). Compared to 
egg-based vaccine production, mammalian cell cultures 
provide shorter production times in more controlled pro-
cesses that takes advantage of closed-system bioreactors, 
and the opportunity to cultivate viral stocks without sig-
nificant egg passage-dependent antigenic changes [166].

Apart from its role in whole virus production, immor-
talized mammalian cell lines are efficient factories for 
recombinant protein production, also with the ability to 
make complex and precise post-translational modifica-
tions, essential for correct folding and most likely needed 
to mimic the antigenic structural and glycosylation pat-
terns the host encounters during natural infection [167]. 
However, the possibility for cell lines to carry mammalian 
pathogens or their potential tumorigenicity are consid-
ered key disadvantages for mammalian cells as produc-
ers of therapeutic molecules [168, 169]. In this regard, 
the Vero cell line was established in the early 1960s from 
kidney cells of an African green monkey in 1962, and was 
the first cell line approved by the WHO to produce viral 
vaccines for human use under specified regulatory guide-
lines [170]. Vero cells are considered non-tumorigenic 
below a certain passage number and safe to use as a sub-
strate for vaccines, including vaccines against Japanese 
encephalitis, rotavirus, polio, influenza or smallpox [170, 
171]. More recently, in a recent study to develop a can-
didate VLP vaccine for COVID-19, a stable SARS-CoV-2 
VLP has been produced using the Vero E6 cell line [172].

Apart from Vero cells, other cell lines such as Chi-
nese hamster ovary (CHO), baby hamster kidney (BHK), 
human embryo kidney (HEK), CAP‐T cell line derived 
from human amniocytes, and east lansing line-0 (ELL-0) 
are extensively utilized for the production of recombi-
nant VLPs. CHO cells, the most frequently used cell line, 
have an additional advantage over other cell lines due to 
its non-human origin, which prevents the risk of con-
tamination with human pathogens [146]. Additionally, 
CHO-based systems can be considered safer and cheaper 
than, for example, those based on recombinant lentivi-
rus, which require a higher biosafety capacity [173, 174]. 
CHO cells growing in suspension in serum-free medium 
can be used to produce recombinant viral proteins, such 
as the S and PreS2 proteins of the hepatitis B virus (HBV) 
surface antigen, which are then assembled into HBV-like 
particles [175]. Indeed, the GenHevac® B vaccine, which 

contains these viral proteins, is immunogenic in humans 
[176]. The cytomegalovirus (CMV) glycoprotein B anti-
gen has also been stably expressed in CHO cells, lead-
ing to the development of a recombinant vaccine that is 
immunogenic in humans [177, 178]. Recently, CHO cell 
line was used by Glaxo Smith Kline (formerly Novartis 
Vaccines) to produce a pentameric molecule consisting 
of the human CMV surface proteins. The pentamer could 
be recognized by monoclonal antibodies, and induced 
neutralizing antibodies in mice, suggesting its suitability 
as a vaccine in humans [179].

The third generation of the hepatitis B vaccine, Sci-
B-Vac, contains three HBV antigens, including the S, 
Pre-S1, and Pre-S2 antigens, and is also expressed in 
mammalian CHO cells [180]. CHO cells have also been 
used to produce Hantavirus VLPs, which increase CD8+ 
T cell activity and induce antibody responses compara-
ble to those seen with inactivated vaccines [181]. There 
is a human vaccine approved for human use (see Table 1) 
that is produced in CHO cells. Shingrix (GSK, Londres, 
UK) is a herpes zoster vaccine based on varicella zoster 
virus glycoprotein E [182].

Another widely used mammalian cell line, the HEK293 
cell line, was created by transfection of a human primary 
embryonic kidney cell culture taken from an aborted 
embryo with sheared DNA of adenovirus type 5 (AD5) 
[183]. The advantages of HEK293 cells are their ability 
to grow in suspension in serum-free medium, suitability 
for large scale transient gene expression, high transfect-
ability and stable expression. Two genetic variants have 
been described for the HEK293 cell line: the 293E line 
and the 293 T line, expressing the EBNA-1 antigen and 
the Simian Virus 40 large T Ag, respectively. These cell 
lines sustain episomal replication of plasmids contain-
ing the EBV and SV40 origins, respectively [184]. As 
with the EBNA1-expressing CHO cell line, the fact that 
these HEK293 genetic variants constitutively express 
viral antigens could present challenges for health author-
ity approval. In addition, the tumorigenicity of this cell 
line is still an issue [185]. An Ebola virus (EBOV) VLP 
vaccine candidate has been produced by expressing the 
EBOV VP40 and the virus envelop glycoprotein in HEK 
293 T cells. These VLPs were morphologically similar to 
wild-type virus particles, highly immunogenic in in vitro 
and in  vivo studies, and they effectively induced the 
maturation, activation, and secretion of cytokines and 
chemokines. Mice vaccinated with EBOV VLPs showed 
B cell activation and produced high levels of EBOV-spe-
cific antibodies. The VLPs also activated CD4+ and CD8+ 
T cells and protected mice from deadly challenges [186]. 
Nipah virus VLPs can also be formed in HEK293T cells 
expressing the virus attachment glycoprotein (G), fusion 
(F) glycoprotein and matrix (M) protein [187]. Mice 
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vaccinated with such VLPs produce specific antibodies 
against Nipah virus and a strong CD8 + T cell response. 
Neutralizing antibodies have also been observed in 
pigs vaccinated with NiP VLPs, but in these animals no 
CD8 + T cell responses were detected [188]. VLPs gen-
erated using proteins from other paramyxoviruses have 
also been developed, and have shown promising results 
in initial pre-clinical studies [189]. The COVID-19 pan-
demic drove the rapid development of adenoviral vec-
tored vaccines and their eventual emergency use. Among 
the adenoviral vectored vaccines approved for emergency 
use by the WHO, Ad5-nCOV [190] and ChAdOX1-nCoV 
[191] are produced in HEK293 cells, while Ad26.COV2-S 
is produced in PER. C6 cells [192].

Regarding the expression system itself, recombinant 
proteins can be expressed transiently or stably. Mam-
malian cells constitutively producing recombinant pro-
teins are established by inserting the recombinant gene 
into the host genome, a costly and time-consuming pro-
cess. Even though stable cell lines based on CHO cells 
are widely used to produce recombinant proteins [193], 
there are inherent limitations in the synthesis and secre-
tion of many complex polypeptides, such as low produc-
tivity, growth restriction and expression instability, low 
resistance to culture-related stresses and high costs of 
production. Random insertion of the foreign gene into 
the host genome can result in clonal genotypic variation 
and phenotypic instability (which jeopardizes cell line 
stability and process reproducibility and consistency), 
and in genomic instability over time, causing a drop in 
protein production [194, 195]. All these facts complicate 
the procedure and increase the production costs [196]. 
Thus, improvement of stable cell lines has become a clear 
need, using strategies involving genetic modification, 
optimization of expression vector and process engineer-
ing [197, 198]. With the advancement of CHO cell line 
development and process optimization, yields of some 
recombinant proteins (such as monoclonal antibodies) 
have achieved as high as 5 g/L, or even more than 10 g/L 
[199, 200]. Faster and cheaper approaches for protein 
production are preferred when many proteins (or sev-
eral variants of a single protein) must be rapidly obtained 
and evaluated. In this context, transient gene expression 
(TGE) is the strategy of choice. TGE has a relatively short 
period for protein harvesting, but usually results in low 
yields, as the foreign gene is not integrated into the host 
genome and therefore is lost through time [201]. The 
TGE efficiency using HEK cells (the leading human cell 
line platform used in this approach) is restricted by low 
transgene expression levels [202]. Therefore, transient 
expression systems are only of short-term usage [203]. 
Besides, proteins transiently expressed can show hetero-
geneity in glycan content, resulting in inconsistency in 

affinity and efficacy [204]. Finally, another general draw-
back of human cell lines (like HEK) is that they are vul-
nerable to human viral infections. Thus, viral inactivation 
on human cell lines is essential [205].

In conclusion, despite these limitations associated to 
low yield anf high cost, mammalian cell cultures provide 
a flexible and scalable platform that can benefit from 
well-established biopharmaceutical bioreactor cell cul-
ture infrastructures for vaccine production. The combi-
nation of advances in cell culture as the use of serum-free 
medium, suspension culture, microcarriers to increase 
cell densities and improvements in bioreactor design 
result in a greatly improved strategy to produce new and 
more effective vaccines for human and animal health.

Alternative factories for recombinant vaccine 
production
Despite the success of the aforementioned systems to 
produce recombinant proteins, other approaches are also 
available, probably being plants the most relevant alter-
native platform as vaccine producers. The production 
of therapeutic proteins in plants is often referred to as 
molecular farming, a method first proposed in 1986 by 
introducing a human growth hormone gene in tobacco 
and sunflower plants [206]. Since then, different plants 
were modified to express recombinant proteins including 
but not limited to maize, tobacco, potato and rice. After 
some therapeutic proteins were successfully produced, 
the first plant-produced vaccine was approved by the US 
department of agriculture for veterinary use in 2006. It 
consists of a subunit vaccine against Newcastle disease 
virus (NDV) produced in cultured tobacco cells that suc-
cessfully protected poultry from a challenge with NDV 
[207, 208].

A hallmark for plant-made vaccines was the produc-
tion of 10 million doses of a candidate H1N1 influenza 
virus vaccine composed of a plant-produced VLP within 
a month of receiving the sequence information, pre-
senting a serious advantage in relation to the traditional 
egg-derived influenza vaccines that are limited by time-
consuming and hard-to-scale manufacture [209]. The 
plant-produced VLPs were successful in preclinical tri-
als and were able to induce both humoral and cellular 
immune responses in phases I and II trial in humans, 
presenting a satisfactory safety profile and modest results 
in phase III trials [210–212]. In the last years, several 
plant-based vaccine strategies are being assessed in clini-
cal trials, developed against hepatitis B, cholera, Ebola, 
influenza, and other infectious diseases [213]. More 
recently, the COVID-19 pandemics pushed plant-made 
vaccines to the spotlight, with 3 phase 3 trials taking 
place targeting SARS-CoV-2 and presenting encourag-
ing results [214]. Among them, Medicago® employed the 
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same VLP technology initially developed for influenza 
and managed not only to reach a high rate of protection 
against different SARS-CoV-2 strains but also to become 
the first plant-produced vaccine approved for human use 
[215, 216].

Even though plants can be stably modified, most 
approaches focus on transient expression, frequently 
using Agrobacterium tumefaciens or to a lesser extent 
other viruses such as Tobacco mosaic virus (TMV), a 
process that is less time-consuming and renders higher 
and more consistent yields [213]. Lately, chloroplast 
transformation has emerged as an alternative since it 
allows proteins to fold and accumulate in the subcellular 
compartment, even though this strategy still faces draw-
backs regarding low efficiency and impaired glycosylation 
[217]. In fact, glycosylation of plant-produced proteins is 
a relevant aspect of this system since while this process 
does occur, plant glycans differ slightly from human ones. 
This may render an increased immunogenicity. While 
this feature may be deleterious for therapeutic proteins 
for reducing their efficacy and likely eliciting side effects, 
it may actually boost the effect of subunit vaccines. The 
configuration of plant polysaccharides may act as a nat-
ural adjuvant, as they bind to receptors expressed by 
APCs and are recognized as PAMPs, which enhances 
antigen presentation by APCs [218, 219]. In fact, several 
plant polysaccharides are currently being explored as 
adjuvants, with encouraging results that allowed many 
of them to advance to clinical trials [218]. In response 
to concerns about allergies and immune responses elic-
ited against the glycosylation pattern, several strategies 
have been developed to modify plant glycosylation pat-
terns to be more human-like, mainly focusing on modi-
fications of N-glycosilation or syalation pathways [209, 
217]. Glycoengineering is evolving up to a point where 
even entire human glycosylation biosynthetic pathways 
can be transferred into plants, combined to the elimina-
tion of unwanted native glycosylation enzymes, aiming to 
increase product quality and safety [217, 220].

Overall, plant-produced vaccines present several 
advantages, as the production in this system tends to be 
cheaper than in mammalian cell cultures but it allows 
relatively similar protein folding, assembly and glyco-
sylation, and unlike bacterial systems it renders endo-
toxin-free products [221, 222]. Scale-up of production is 
easier as it consists of simply growing more plants rather 
than relying on bioreactor production optimizations, 
and plant-based vaccines frequently dismiss the use of 
cold-chain for transport [222]. This system requires less 
sophisticated infrastructure than its counterparts and 
could help overcome vaccine distribution issues around 
the globe. On the other hand, some concerns have been 
raised regarding the use of genetically modified plants. 

Environmental risks such as gene transfer or exposure to 
proteins used as selectable markers, as well as inadvert-
ent exposure to the engineered antigens, are factors to 
be considered to establish the proper crop management 
[222]. Concerns related to pollen improper dispersion are 
being addressed by using tissue-specific promoters that 
drive the transgene expression to specific tissues. Beyond 
this, the downstream processing for protein purification 
can become expensive as copious volumes of impuri-
ties and cell debris must be removed, which reduces the 
financial advantage obtained by a cheaper production 
[219]. Overall, plant-based vaccines can particularly 
thrive whenever an orally-administered formulation is 
viable, such as for veterinary use, or when the speed of 
production is an important feature, such as for emerging 
diseases, since transient expression is easier to scale-up 
in this system [219].

Another alternative system is the use of algae to pro-
duce recombinant proteins, and while different species 
can be used, the most advanced microalgal platform is 
Chlamydomonas reinhardtii, which has already been 
used to produce several proteins. In this case, the gene 
insertion is often performed in the chloroplast, which 
further allows the accumulation of the protein of inter-
est and thus facilitates the downstream purification 
steps [223]. In 2003 the first algae-produced vaccine was 
reported [224]. It was followed by reports of antigen-
specific antibodies being elicited against the structural 
protein E2 of classical swine fever virus (CSFV) after 
mice were vaccinated with antigens produced in C. rein-
hardtii [225]. Alternatively, these algae can be used for 
the administration of edible vaccines for farmed ani-
mals such as fish and poultry, being dried and formu-
lated along with the feed. For instance, a malaria vaccine 
composed of freeze-dried algae that produced a Plas-
modium falciparum surface protein was used to orally 
immunize mice and was able to elicit both IgG and 
IgA immune responses [226]. Despite its potential, it is 
noteworthy that this system lacks the post-translational 
modifications.

Transgenic animals have also been investigated as an 
alternative for recombinant protein production, mainly 
due to the possibility of producing large amounts of 
complex proteins in the milk [227]. In the context of vac-
cine production, two rotavirus proteins were produced 
in the milk of transgenic rabbits. The yields were up to 
200 μg/ml and they were able to induce antigen-specific 
immune responses that conferred a high level of protec-
tion against virus challenge, either when partially purified 
milk was intrarectally administered or when whole-milk 
was orally administered to mice [228, 229]. In another 
study, mice were modified to produce an enterovirus 71 
protein in the milk, and pups receiving transgenic milk 
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orally developed antigen-specific antibodies and dem-
onstrated relatively better health conditions after the 
challenge [230]. However, in the last years, there are less 
studies published that use transgenic animals as expres-
sion systems.

Recombinant vaccines for COVID‑19
Beyond the approved anti-COVID-19 front-line vaccines 
based on expressible embedded mRNA and replication-
incompetent adenovirus vectors [118, 231, 232], a recom-
binant vaccine has come to market (Table  1, [157]) and 
other many alternative recombinant vaccines are also 
approached through under fast developing strategies. 
Because of the broad clinical experience in protein-based 
vaccination, such protein-based vaccines are expected to 
enter the prophylaxis landscape and complement or even 
substitute, in the longer term, the nucleic acid versions 
[233–236]. Due to the enormous investment in testing 
immunization strategies against SARS-CoV-2 infection, 
a comprehensive and updated overview of the spectrum 
of vaccine prototypes is just not feasible and it is beyond 
the scope of this review. However, it can be stressed that 
most of the taken approaches are based on the full-length 
spike protein (S) or its receptor binding domain (RBD), 
responsible for virus attachment to the host cell. Other 
SARS-CoV-2 proteins are also under consideration as 
epitope-full, including E, N and M [237, 238], with are 
explored in essentially all the protein production systems 
discussed above.

Conclusions
Through the recruitment of technologies and expertise 
from more than 40  years of recombinant drug produc-
tion [31, 34], vaccinology has moved from the conven-
tional use of attenuated or inactivated live vaccines to 
recombinant antigens in different formulations. In par-
ticular, the presentation of vaccine candidates in form of 
oligomeric NPs or VLPs, mainly pushed by the develop-
ment of insect-based protein production platforms, has 
allowed to overcome the moderate immunogenicity of 
plain subunit vaccines. The multiple and regular anti-
gen presentation at the nanoscale boosts the immune 
response and increases protection, as well as proper anti-
gen folding promoted by a native-like glycosylation pat-
tern. Oligomerization is achieved not only in insectcell 
platforms but also in other production systems. The con-
venient formulation of the vaccine candidates is largely 
favored by the extension of the catalog of production 
platform explored for recombinant vaccine production, 
which include transgenic plants and animals. Despite 
the enormous success just observed by the application 
of mRNA technologies in vaccination against COVID-
19, recombinant vaccine formulations still have plenty of 

room for engineering and improvement, and they show 
potential to overcome some of the limitations posed by 
genetic vaccines.
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