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Abstract

Antimicrobial peptides (AMPs) are a heterogeneous group of short polypeptides that target not only microorganisms but also viruses
and cancer cells. Due to their lower selection for resistance compared with traditional antibiotics, AMPs have been attracting the
ever-growing attention from researchers, including bioinformaticians. Machine learning represents the most cost-effective method for
novel AMP discovery and consequently many computational tools for AMP prediction have been recently developed. In this article, we
investigate the impact of negative data sampling on model performance and benchmarking. We generated 660 predictive models using
12 machine learning architectures, a single positive data set and 11 negative data sampling methods; the architectures and methods
were defined on the basis of published AMP prediction software. Our results clearly indicate that similar training and benchmark data
set, i.e. produced by the same or a similar negative data sampling method, positively affect model performance. Consequently, all the
benchmark analyses that have been performed for AMP prediction models are significantly biased and, moreover, we do not know which
model is the most accurate. To provide researchers with reliable information about the performance of AMP predictors, we also created
a web server AMPBenchmark for fair model benchmarking. AMPBenchmark is available at http://BioGenies.info/AMPBenchmark.
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Introduction

Antimicrobial peptides (AMPs) are short polypeptides, generally
composed of up to 50 amino acids that are widespread in all forms
of life, from microorganisms, i.e. bacteria, archaeans and one-
celled eukaryotes, to multicellulars [1, 2]. In microorganisms, they
participate in self-protection and microbial competition [3, 4]; in
multicellulars, they are part of the first line of defence against
microorganisms but also target viruses and cancer cells [5, 6].
Despite their diversity in the primary amino acid sequence, AMPs
are rich in cationic and hydrophobic residues. The positive charge
and hydrophobicity allow them to fold into amphipathic sec-
ondary structures that preferentially disrupt negatively charged
microbial/cancer cell membranes but not the healthy eukaryotic
ones; the latter contain stabilizing cholesterol and their outer
leaflet is composed of neutral phospholipids. AMPs can trigger
transient membrane disruption by forming pores and micelliza-
tion but, depending on the concentration, they may lead to cell
death by osmotic shock [7–10]. The alternative mechanisms of
action, especially for the larger AMPs (about 100 amino acids long
or longer), include binding to specific cytosolic macromolecules
and thereby inhibiting synthesis of proteins, nucleic acids and
components of the cell wall [11, 12].

AMPs have also been demonstrated to have lower selection
for resistance compared with traditional antibiotics. A traditional
antibiotic specifically targets a single enzyme but AMPs, most of
all, interact non-specifically with many components of the cell
membrane. This makes it more difficult for bacteria to develop
resistance against them [13–15].

According to the World Health Organization, the antibiotic
resistance is currently behind the death of at least 700 000 people
each year; however, the forecast of the death toll of 10 million
annually by 2050 makes the race for alternative therapeutics of
the utmost importance [16]. In light of their medical potential,
AMPs are viewed as hopeful candidates for further experimental
research. Consequently, we have recently observed a boom in
computational tools for AMP prediction with the machine learn-
ing algorithms leading the way [17].

Traditionally, biological problems have first been approached
by conventional, i.e. non-deep machine learning-based methods,
such as random forests (RF) or support vector machines (SVM),
which were then followed by more complex deep learning algo-
rithms [17]. In order to produce reliable predictions, the algo-
rithms first require labelled training data to build a predictive
model. The training data include a positive and a negative data
set, in our case AMPs and non-AMPs, respectively. In order to
make the sequences readable for machine learning, they have
to be transformed into informative features (feature vectors) and
this process is known as feature extraction. Depending on the
method of feature extraction, the obtained feature space may
require additional reduction, and consequently an appropriate
feature selection method is applied, e.g. for AmpGram the initial
feature set amounted to 33 620 n-grams (amino acid motifs of n
elements) but was decreased with Quick Permutation Test to 13
087 most informative descriptors [18].

There are many databases with thousands of experimentally
validated AMP sequences, such as DBAASP [19], APD [20], CAMP
[21], DRAMP [22] or dbAMP [23]; therefore, it is possible to cre-
ate a representative positive data set. However, the authors of
AMP classifiers, except for ampir [24], do not take into account
that there might be two types of sequences deposited in these
databases: mature AMPs and precursor AMPs with cleavable N-
terminal signal peptides; AMPs are mostly secretory proteins.

Since the databases seem to contain generally mature AMPs,
and moreover the developers often restrict the sequence length
in their data sets, the algorithms are mainly trained on mature
AMPs. Consequently, they are good at detecting mature AMPs but
might have problems classifying longer sequences, including the
precursor proteins [25].

The issue of identification of precursor and longer AMPs can be
satisfactorily addressed because the data about these sequences
are available in public databases, e.g. in UniProt [26]. The real
problem with AMP prediction lies with the negative data set as
there are hardly any sequences annotated as non-AMPs. Interest-
ingly, the lack of reliable negative samples also concerns other
areas related to bioinformatics, e.g. prediction of disease genes
[27, 28], microRNAs [29], bacterial virulence factors [30]; iden-
tification of protein–protein [31], protein–RNA/DNA [32, 33] and
protein–drug interaction sites [32, 34]; as well as inferring protein
sequence-function relationships [35].

In all these cases, the developers have to resort to: (i) one-class
classification, (ii) positive-unlabelled learning or (iii) to somehow
build a negative data set. In the first case, the model is trained
on the positive sample, whereas in the second on the positive
and unlabelled data; the unlabelled set includes both positive
and negative examples. These two approaches aim at solving
the problem of the negative sample by either not using it at
all or applying a wide variety of strategies to obtain negative
cases from the unlabelled set based on the positive sample, e.g.
using distance measures (for details, see [36, 37]). Interestingly,
neither the one-class classification nor the positive-unlabelled
learning have attracted the attention of developers working on
AMP prediction. The majority of them created their negative sets
by performing non-probability sampling on sequences deposited
in UniProt [26] or other databases (e.g. PDB [38]) though they do
not define it as such. In this approach, the negative examples are
selected on the basis of clearly defined criteria dictated by the
researcher, and these criteria represent a sampling method (for
details, see section Materials and methods and Table 1). In con-
trast to positive-unlabelled learning, dividing UniProt sequences
between AMPs and non-AMPs does not require any complex
methodology and is independent of the positive sample but for the
length and number of sequences for some sampling methods. It
is simply made by sequence filtering and then randomly selecting
peptides for the final negative data set. For clarity purposes in this
article, the name of the sampling method is always preceded by
an abbreviation: SM (sampling method), TSM (sampling method
used to generate the training set) or BSM (sampling method used
to generate the benchmark set) and colon, e.g. SM:AmpGram,
TSM:AmpGram and BSM:AmpGram, respectively.

The aim of this study was to elaborate on the impact of negative
data sampling on model performance and benchmarking. We
decided to explore this issue because each developer of an AMP
predictor tested only one sampling method to build the optimal
non-AMP class despite knowing that machine learning models
heavily depend on the data sets they are trained on. They all
overlooked the fact that various sampling methods could gener-
ate statistically different samples, thereby affecting the predic-
tive power of their models. Moreover, and more importantly, we
investigated how machine learning architectures perform when
they are trained on a given data set but tested on a different
one, a commonplace in model benchmarking (Figure 1A). This
particular issue is of vital importance not only for the comparison
of AMP predictors but for the evaluation of all machine learning
models in general. We define the machine learning architecture
as an approach to solve the problem of AMP prediction with
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all its parameters involved in the machine learning cycle. The
architectures for our study were developed based on published
models that we were able to reuse or reimplement; some might
slightly deviate from the original methods (for details, see section
Materials and methods and Table 2, S2). For clarity purpose, the
name of a given architecture always begins with a letter ‘A’ and
colon, e.g. A:AmpGram. By the term machine learning model, we
understand one specific instance of a given architecture, i.e. an
architecture trained on the same positive and one of negative
samples. Consequently, what we did was to generate 660 machine
learning models using (i) 12 defined architectures, (ii) the same
positive training data set and (iii) 11 different negative sampling
methods each run five times (Figure 1B). To our knowledge, this
was the first kind of such a research project undertaken, and
moreover on such a scale.

Materials and methods
Data sets
To create the positive data set, we used DBAASP v3.0 [19], a
manually curated database for experimentally verified peptides
with antimicrobial properties. We selected sequences with
activity against Gram positive or Gram negative bacteria. Next,
we removed those with non-standard amino acids or shorter
than five. We used CD-HIT version 4.8.1 [39, 40] to reduce the
redundancy and eliminated sequences with the identity threshold
higher than 90%. This threshold was most frequently used for
the reduction of positive data in the algorithms selected for
the reimplementation of negative sampling methods (Table
S1). In total, we obtained 5190 AMP sequences. To prevent the
information leakage, the positive data set was split, before
sampling the negative set, into a training sample (80%, 4151
sequences) and a benchmark sample (20%, 1039 sequences).

The negative data set used for sampling was created using
sequences available in the UniProt database. The reviewed protein
sequences (563 972) and their annotations were downloaded from
the UniProtKB release 2020_06 [26].

We considered 26 methods of negative data sampling from
literature (Table S2) and selected 11 well-described ones for
reuse/reimplementation (Table 1). Each method was run on the
negative data set of UniProt sequences five times to create five
replicates of the training and benchmark samples (Table S4, S5)
to verify their repeatability. Some selected methods required
modifications, e.g. removal of sequences with non-standard
amino acids to make them readable for all architectures. We
also took measures to prevent information leakage between the
training and benchmark sets, especially for the sampling methods
that did not depend on the positive data. The full description of
changes is provided in the Supplementary Data.

The selected sampling methods use combinations of keywords
to search the negative data set of UniProt sequences. Gener-
ally the keywords are repetitive among the methods used. They
allowed to filter out AMPs by naming their typical functions, e.g.
‘antimicrobial’, ‘antibacterial’, ‘antiviral’ and/or restrict the cellu-
lar compartment to cytoplasm since AMPs are mostly secretory
proteins (Table 1). The latter is, however, unfortunate because the
predictive models focus then on differences between cytoplasmic
and secretory peptides instead of detecting AMPs, i.e. they neglect
the issue of (i) distinguishing AMPs from secretory non-AMPs and
(ii) cytosolic AMPs. The number of the filtered-out sequences was
small if only the function keywords were considered, e.g. about
1% of the negative data set of UniProt sequences for SM:CS-
AMPPred, SM:AMAP and SM:iAMP-2L, but increased when the

cytosolic or additional location, especially experimentally veri-
fied, was included to 65%, 70% and 98% for SM:Gabere&Noble,
SM:AMPScannerV2 and SM:Witten&Witten, respectively.

For five methods, SM:AmpGram, SM:AMPlify, SM: AMPScan-
nerV2, SM:CS-AMPPred and SM:Witten&Witten, the number of
sequences in the negative sample depended on the positive one,
i.e. the data sets were balanced. Two methods: SM:AMAP and
SM:dbAMP generated only slightly imbalanced samples, the for-
mer due to the reduction of sequence redundancy with CD-HIT
[40] at the end of the sampling process but the latter by acci-
dent. The remaining methods produced imbalanced (SM:iAMP-
2L, SM:Wang et. al) or highly imbalanced (SM:Gabere&Noble)
sets with the predominance of non-AMPs. The exception was
SM:ampir-mature with minority of non-AMPs (Table 1, S4, S5).

Five negative sampling methods: SM:AmpGram, SM: AMPlify,
SM:AMPScannerV2, SM:Gabere&Noble and SM: Witten&Witten
produced non-AMPs that exactly matched in length peptides and
proteins contained in the positive set, and they were mostly up to
50 amino acids long though the sequence maximum length was
190 amino acids. The negative samples of SM:AMAP and SM:Wang
et. al were only similar in terms of length distribution to the AMP
set because of CD-HIT [39, 40] reduction at the end of sequence
filtering. The SM:ampir-mature generated only short sequences,
and each sequence length within the range of 10 to 40 amino
acids was approximately equally represented (Table 1, Figure S1).
The other sampling methods focused on longer peptides and
proteins though at the same time they rejected sequences longer
than about 100 amino acids. These methods included SM:dbAMP,
SM:CS-AMPPred and SM:iAMP-2L and their sequence length dis-
tribution resembled that of an upside-down isosceles triangle
(Table 1, Figure S1).

All the negative data sampling methods generating sets with
equal or similar length distribution to the positive sample selected
their non-AMPs from peptide/protein fragment or fragments,
while the other methods from uncut sequences of the negative
UniProt data set.

In order to avoid overrepresentation of highly similar sequences
in the non-AMP samples, we used the clustering algorithm CD-
HIT version 4.8.1 [40] for seven sampling methods according to
their description. We removed sequences above a certain identity
threshold, and mostly it was 40% (Table 1).

Interestingly, SM:AMPlify, SM:AMPScanner V2 and SM:ampir-
mature additionally verified whether the negative data set did not,
by chance, contain sequences from the positive data set (Table 1).
This might arise as a result of: (i) non-AMPs generation from a
protein fragment or fragments, and (ii) an improper/lack of anno-
tation in UniProt [26] for sequences that are indeed antimicrobial.

The sampling methods generated sequences that greatly dif-
fered from those in the positive data set both in the amino
acid composition (Figure S2–S6) and physicochemical properties
(Figure S7). There were also some pronounced differences among
the negative sets, but the five iterations of each method always
produced similar samples (Figure S2–S8).

Model architectures
We considered 26 model architectures for the prediction of AMPs
from literature (Table S2), and selected 12 for reimplementation,
two deep learning and ten non-deep learning-based methods,
the latter represent mainly RF and SVM algorithms (Table 2). In
our research, we chose algorithms described in detail that could
be run locally and do not require any usage of web servers or
other software for feature selection. Moreover, we focused on the
classification task, i.e. the model ability to divide sequences into
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Figure 1. Schematic representation of the traditional model benchmarking (A) and the methodology employed in comparing the impact of different
negative data sampling methods on model performance (B). Models 1, 2 and 3 (colourful hexagons) were trained on data set A, B and C (colourful
rectangles), respectively. Each data set was generated by an appropriate negative sampling method (white ovals) and a positive sample (blue rectangles).
In the evaluation process, the models were compared only on the benchmark set C, built with the same method as the training set C, thereby introducing
some bias in favour of Model 3 in the benchmark analysis (A). Architectures were developed based on published models, and they represent the algorithm
with all its parameters involved in the machine learning cycle (white parallelograms). Each architecture was trained on the same positive data set (the
white rectangle) and a negative sample was generated by one of the 11 negative sampling methods (white ovals) five times to verify the repeatability. The
training and benchmark sample are indicated as blue and red rectangles, respectively. The models (orange hexagons) represent instances of architectures
trained on given data sets and were validated on each benchmark sample. The results of model performance were indicated as white clouds (B).

AMPs or non-AMPs. Consequently, we did not consider software
that is trained using MIC (minimum inhibitory concentration)
values, e.g. Witten&Witten or multiclass models. However, if the
multiclass algorithm was composed of two models: one predicting
if a given sequence is or is not an AMP, and the second classifying
an AMPs into functional groups, we did reimplement the first
model, e.g. for A:iAMP-2L and A:MLAMP.

For each model, sequences in the data sets were transformed
(encoded) into features (descriptors) using an appropriate feature
extraction method (Table 2). In the case of non-deep learning
architectures, the features can be defined by the researcher, based
on the knowledge of AMP properties, whereas the deep learning
architectures can automatically learn high-level features from
the training data sets though A:Deep-AmPEP30 also employed
developer-defined features.

The simplest feature extraction method was used by A:AMAP,
and it was based on the amino acid composition. Consequently,
its feature space contained 20 descriptors, each reflecting the

occurrence frequency of one of the 20 amino acids in a peptide
sequence (Table 2). Other architectures such as A:iAMP-2L,
A:MLAMP, A:ampir and A:Deep-AmPEP30 used features based on
pseudo-amino acid composition. Beyond the simple amino acid
counts, they included various physicochemical and structural
properties of amino acids to incorporate the information about
the sequence order; their feature space increased accordingly
(Table 2). Four architectures, A:CS-AMPPred, A:MACREL, A:AmPEP
and A:AmPEPpy, used features based on structural and physic-
ochemical properties of peptide sequences, e.g. their α-helix
propensity, charge and hydrophobicity (Table 2). A:SVM-LZ used
pairwise similarity scores, and A:AmpGram n-grams. In the case
of A:AMPScanner V2 the feature information was extracted in
the embedding layer, and then the obtained embeddings fed the
subsequent layers of the models (Table 2).

Five non-deep machine learning architectures used feature
selection for feature space optimization, but we implemented
it for only two architectures: A:CS-AMPpred and A:AmpGram.
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The former used principal component analysis and the latter
Quick Permutation Test (Table 2). For A:AmPEP and A:ampir, we
used the reduced feature space indicated by their developers
without computing Pearson correlation coefficients and rigorous
recursive feature elimination, respectively. For A:AmPEPpy, we
abandoned the reduction of feature space by stepwise feature
selection because according to the authors it did not improve the
predictive power of the model but only its size.

Five of the selected architectures required only slight modifi-
cations in their already available codes, and seven were imple-
mented based on the information provided by the authors either
in their articles or personal communication. A comprehensive
description of the implementations and the applied modifications
are provided in the Supplementary Data, including Table S3.

Results
The impact of data sampling on benchmarks
In order to evaluate the impact of data sampling on bench-
mark analysis, the receiver operating characteristic (ROC) curves
were plotted (Figure S9–S69) and values of the area under the
ROC curve (AUC) were calculated for each of 660 models on
each benchmark data set and then averaged for the appropri-
ate architecture. The results of the analysis are presented in
Figure 2(A), S70 and S71. They clearly indicate that all but two
architectures, A:AmPEP and A:iAMP-2L, performed much better
when the training and benchmark samples were generated by
the same sampling method. A:SVM-LZ, A:AmpGram and A:CS-
AMPPred showed only small improvement of 2.3%, 3.6% and 4.4%,
respectively; however, A:AmpGram by far outperformed the other
architectures. The mean value of AUC for A:AMAP and A:MACREL
increased 7.5%, for A:ampir and A:AmPEPpy about 9.5% and for
the rest architectures soared more than 10% (Table S6). A:AmPEP
and A:iAMP-2L were the only architectures, which preferred dis-
similar sampling methods for training and benchmarking, but
both generally performed very poorly with mean AUC amounting
to 0.65. The calculated differences were statistically significant for
all comparisons but for iAMP-2L and SVM-LZ (Kruskal–Wallis test
with Bonferroni correction, P-value < 0.05, Table S7).

The main conclusion from these analyses is that similar train-
ing and benchmark data set positively affect model performance.
Accordingly, there was significant negative correlation between
mean AUC value and the difference in amino acid composi-
tion between the training and benchmark sets, measured as the
square root of the sum of the squared differences in the frequency
of individual amino acids (Spearman correlation coefficient, ρ

= −0.53, P-value < 2.2e-16). There was also smaller but still
significant negative correlation for mean AUC and the absolute
difference between median length of the sets (ρ = −0.44, P-value
< 2.2e-16).

The impact of architecture, training and
benchmark data sampling method on model
performance
To visualize which of the three components of the machine learn-
ing model, architecture, training or benchmark data sampling
method, bears the greatest importance for model performance,
we compared box plots of AUC distribution for each of these
features (Figure 2B–D). The plots clearly indicate the greatest
variation of AUC for data grouped according to the architecture.
We also calculated the ratio of between-group median absolute
deviation (MAD) to within-group MAD to verify if the AUC disper-
sal between different architectures or training/benchmark data

sampling methods is much greater than the AUC dispersal found
inside a single architecture or method. The MAD ratios amounted
to 1.29, 0.48 and 0.29 for architectures, training and benchmark
data sampling methods, respectively, and express in numbers the
relative AUC variation presented in the graphical form in the box
plots (Figure 2B–D). Moreover, to further verify the importance
of the three components, we conducted pairwise Wilcoxon test
for paired samples (Table S8–S10). The statistically significant
differences (after Bonferroni correction) were indicated for 86%,
60% and 62% comparisons for groups of architectures, training
and benchmark data sampling methods, respectively.

Unquestionably, the greatest differences in AUC are associ-
ated with the architecture indicating that this component is
more important than the training and benchmark data sam-
pling method for model performance. Among the five architec-
tures with the median AUC value greater than 0.9, there were
three using RF (A:AmpGram, A:MACREL and A:MLAMP), one SVM
(A:ampir) and one deep learning algorithm (A:AMPScannerV2)
(Figure 2B). The results emphasize the power of RF-based archi-
tectures in tackling the problem of AMP prediction. The only RF
architecture that stood out with small median AUC value was
A:AmPEP, which most probably results from the reduction of
its feature space to 23; A:AmPEPy, a python implementation of
A:AmPEP, with the full feature set of 105 performed quite well.
The best architecture was A:AmpGram with the median AUC
value of 0.93 and the narrowest box indicating low variance of
AUC obtained for various combination of training and benchmark
data (Figure 2B). About 73% models of this architecture obtained
AUC greater than 0.9. The A:AmpGram performance suggests
that short amino acid motifs might have greater discriminatory
power than global amino acid composition or physicochemical
and structural properties, such as charge or tendency to form α-
helices. The existence of well-conserved motifs typical for AMPs,
e.g. lysine-tryptophan motifs, supports our observation. These
motifs cannot be replaced without reducing the antimicrobial
propensity even if the global amino acid composition stays the
same [55].

We also noticed a certain trend in the distribution of
AUC for the training data sampling methods (Figure 2C).
The AUC values calculated for TSM:AmpGram, TSM:AMPlify,
TSM:AMPScannerV2, TSM:Gabere&Noble and TSM:Wang et. al
were generally higher than for TSM:AMAP, TSM:ampir-mature and
TSM:Witten&Witten, and the lowest AUC values were for TSM:CS-
AMPPred, TSM:dbAMP and TSM:iAMP-2L. Interestingly, the first
five sampling methods produced data sets similar in terms of
length distribution (Figure S1), amino acid composition (Figure
S2–S6) and physicochemical properties (Figure S7) that deviated
from the other sets, especially those with the lowest median AUC.
Given that there was significant negative correlation between
mean AUC value and the difference in amino acid composition
and median length between the training and benchmark sets (see
above), it is not surprising that architectures trained and bench-
marked on the five similar sampling methods outperformed the
others. They simply were advantaged classifying benchmark
sequences in accordance with our finding that similar training
and benchmark sample positively affect model performance.

Contrary to the results presented in the prior paragraph,
the sampling methods that performed worse as training sets
(SM:dbAMP, SM:iAMP-2L, SM:CS-AMPPred and also SM:AMAP)
turned out with the highest AUC as benchmark samples
(Figure 2D). This can be explained by the fact that these methods
generate sequences that not only differ from AMPs of the positive
set in the amino acid content and physicochemical properties but
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Figure 2. Model performance depending on the architecture and negative data sampling method used for training and benchmarking. The x-axis
represents mean AUC for architectures trained and tested on sets generated by the same negative data sampling method. The y-axis represents mean
AUC for architectures trained and tested on sets generated by different negative data sampling methods. The architectures on the right of the diagonal
perform better when the training and benchmark sample are produced by the same method, while the architectures on the left when the methods
are different (A). Box plots with median and interquartile range differences in AUC for architectures (B), training data set sampling method (C) and
benchmark data set sampling method (D).

are also generally much longer (Figure S1). The median values for
sequences of SM:dbAMP, SM:iAMP-2L, SM:CS-AMPPred, SM:AMAP
and the positive sample are: 79, 79, 72, 36 and 18, respectively.
Accordingly, we found significant positive correlation between
mean AUC and differences in the median length of the benchmark
negative data sets and the benchmark positive sample (Spearman
correlation coefficient, ρ = 0.74, P-value = 8.63e-11).

Repeatability of prediction for the replicates
of data sets
To verify the repeatability of prediction, each architecture was
trained and benchmarked on five replicates of the training and
benchmark sample. Despite the fact that the replicates were very

similar in terms of length (Figure S1), amino acid composition
(Figure S2–S6) and physicochemical properties (Figure S7), they
did affect the performance of our investigated architectures
(Figure 3), especially A:iAMP-2L, A:AMPScannerV2 and A:Deep-
AmPEP30, for which mean standard deviation (SD) of AUC value
amounted to 0.035, 0.019 and 0.014, respectively (Table S11).
A:iAMP-2L generally resulted in poorly performing models and
the majority of them were characterized by low repeatability.
Similarly, A:Deep-AmPEP30 was not a very robust architecture
and some models trained on the replicated data also produced
significantly different AUC values, e.g. those trained on SM:ampir-
mature, SM:AMPScannerV2 and SM:AMPlify, and benchmarked
on SM:CS-AMPPred, SM:dbAMP and SM:iAMP-2L. In contrast,
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Figure 3. Architecture performance depending on the negative data sampling method used for training and benchmarking. Each of 12 heat maps
represents an architecture, the x-axis and y-axis describe the training and benchmark method of negative data sampling, respectively. Each architecture
was trained and benchmarked on five replicates of the training and benchmark sample. The mean value of AUC for the five replicates is indicated as
shades of red, orange and yellow, and the standard deviation as black dots of varying sizes. The diagonals mark results for architectures trained and
benchmarked on the data generated by the same sampling method.

A:AMPScannerV2 was rather at the forefront of the investigated
architectures, especially if the training and benchmark set were
generated by the same sampling method (Figure 2A, B). In the
case of A:AMPScannerV2, there is a clear pattern of overlapping
low AUC and high SD distribution for models trained on replicated
data generated by SM:ampir-mature, SM:CS-AMPPred, SM:dbAMP,
SM:iAMP-2L and also SM:Witten&Witten (Figure 3). It looks like
these training sets were not enough for deep learning models to
learn features necessary to classify AMPs and non-AMPs correctly.
This result concurs with other works reporting that shallow
models have similar performance to deep ones for AMP prediction
[56].

It is worth emphasizing that the most stable architectures
included also the best ones: A:AmpGram, A: MACREL and A:ampir,
as well as A:AmPEPpy (Table S11, Figure 2A, 2B, 3, S70). Their
mean SD of AUC value amounted to about 0.004. A:ampir imple-
mented SVM and the rest RF algorithm indicating their superiority

over deep learning architectures (A:AMPScannerV2 and A:Deep-
AmPEP30) in tackling our data.

We also noticed a certain trend in the distribution of AUC
reflecting a previously formulated conclusion that similar train-
ing and benchmark data set positively affect model performance.
It was less noticeable for poorly performing architectures: A:iAMP-
2L, A:AmPEP and A:SVM-LZ, and A:AmpGram representing the top
architecture in our studies (Figure 3).

Discussion and conclusions
Machine learning represents the most cost-effective method for
novel AMP discovery. As a result, many computational tools for
AMP prediction have been developed in recent years [17] and
each subsequent state-of-the-art model claims to outperform its
predecessors. As a rule, the state-of-the-art model is evaluated
with other software on a benchmark sample generated by the
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same method that was also used to produce its training set
(Figure 1A). According to the presented research, this is a source
of statistically significant bias in favour of the state-of-the-art
model because the more similar the training and benchmark
data set are the better the model performance (Figure 2A, 2B, 3,
S70). Consequently, we came to logical conclusions that (i) all the
benchmark analyses that have been published for AMP prediction
tools are unfair and (ii) we do not know which model is the most
accurate.

To provide researchers with reliable information about the
performance of AMP predictors, we created a web server AMP-
Benchmark for fair benchmarking of AMP prediction models.
Similarly to Kaggle, AMPBenchmark provides developers with
public and private data sets for model training and validation that
contain explicit and hidden data labels, respectively. The public
data sets are the same samples that were used in the presented
research. AMPBenchmark allows users to upload the prediction
results for their AMP models, trained and benchmarked on the
public data sets. It generates charts and tables comparing the
performance of the uploaded architecture with those deposited
in our database. The users can also upload prediction results for
their AMP models, trained and benchmarked on the private data
set, which is accessible after entering the e-mail address. The
operator of AMPBenchmark will manually verify the results of the
prediction and similarly provide charts and tables for comparative
analysis.

Our study has also vital importance for the ongoing debate
about the reproducibility crisis in science [57, 58]. In machine
learning research, reproducibility means obtaining the same
results to those presented in the original study using the same
data and source code. Recently, Heil et al. [59] proposed three
standards for computational reproducibility: bronze, silver and
gold, reflecting the time needed to recreate research. The minimal
and most time-consuming bronze standard requires: (i) data, (ii)
models and (iii) source code to be published and downloadable.
From the 26 models for AMP prediction that we considered, only
eight met the minimal bronze standard (Table S2). This means
that about 70% models represented non-reproducible work and
consequently are unreliable. Interestingly, this number is very
consistent with the survey published in the journal Nature [58]
indicating that more than 70% researchers failed to reproduce
other group’s experiments. Among the implemented models, five
met the bronze standard: AmPEP, AmPEPpy, AmpGram, ampir and
MACREL, and AmpScannerV2 was accessible upon request. These
architectures, with the exception of A:AmPEP, also represent the
top architectures investigated though A:AmpGram was clearly
the most accurate and best at generalizing to other data sets.

The developers that do not reveal all the details necessary
to recreate their models, not to mention reuse them, shoulder
the blame for the lack of fair benchmarks for AMP prediction
software. Consequently, progress in the field is slowed, mistrust
to bioinformatics is spreading and resources that could have been
allocated to other projects are wasted. Our study represents the
first unbiased approach to compare models for AMP prediction,
and moreover, we made reproducible another six model architec-
tures for further research. In total, we built a staggering number
of 660 machine learning models from 12 architectures. Therefore,
being fully aware of the difficulty of the task, we highly recom-
mend all researchers to embrace the notion of fair benchmarking
and reproducibility using AMPBenchmark web server and the
recommendations provided by Heil et al. [59].

Key Points

• We review the performance of existing machine learning
models for identification of AMPs.

• Our benchmark highlights the major methodological
flaw in the construction of benchmarks as the data
sampling impacts the quality of AMP prediction.

• We propose a solution for fair benchmarking of AMP-
predicting models.
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