
Using the different disks 
 
When you execute the command: 
df 
]$ df -h 
Filesystem                  Size  Used Avail Use% Mounted on 
devtmpfs                    7.8G     0  7.8G   0% /dev 
tmpfs                       7.8G     0  7.8G   0% /dev/shm 
tmpfs                       7.8G  1.4M  7.8G   1% /run 
tmpfs                       7.8G     0  7.8G   0% /sys/fs/cgroup 
/dev/sdb1                    40G   14G   27G  34% / 
/dev/sda5                   1.8T  964G  844G  54% /state/partition2 
/dev/sdb5                   1.8T  1.1T  676G  63% /state/partition1 
/dev/sdb2                    20G  3.3G   17G  17% /var 
tmpfs                       1.6G     0  1.6G   0% /run/user/0 
10.2.2.10:/mnt/labdata/ocs  9.6T  7.8T  1.4T  86% /home/ocs 
tmpfs                       1.6G     0  1.6G   0% /run/user/1132 
10.2.2.15:/home             1.8T  736G 1004G  43% /sharelab/bioinf 

The first column is the “device”: how this disk is seen by the operative system. 
The last column is the “data”: where, in the directory tree, the data that this disk contains 
can be accessed (in which directory the device is mounted) 
 
You will find basically 3 types of disks 
 
1.- Remote disks: 
Those disks that its device name starts with a computer name or a IPadress followed by 
“:”/somethinghere are remote disks usually protected by RAID, you will be able to access 
them in the same place on any computer in our system. Example: 
10.2.2.15:/home             1.8T  736G 1004G  43% /sharelab/bioinf 
10.2.2.10:/mnt/labdata/ocs  9.6T  7.8T  1.4T  86% /home/ocs 

 
They are usually main data directories, but not necessarily. 
Usually “/home/$USER” is a remote disk and it is your main data directory, but not necessarily, if 
“/home/$USER” is not your main data directory avoid creating there any file or directory. 
Highly intense IO (Input-Output) operations (AKA: lots of reading and writing per second) 
should be avoided in these disks. For these purposes local disks are better.  
 
2- Local disks: 
All our computers contain directories called: 
/state/partitionN 

Where “N” is a number. 
These are local disks; they could be HDDs, NVMe or RAID virtual disks. 
Take into account that: 
NVMes are faster but they are smaller than HDDs. 
RAID disks are groups of disks that are presented as a single one, this is done to offer certain 
protection against disk failure. 
You can see if they are hdds (/dev/sdxx), nvme (/dev/nvmexxxx) or a raid virtual disk (/dev/mdxx) 
with the command “df “. 
If these disks are not raid virtual disks, they are not protected against failures, so you should 
never use them for storage of something “valuable”. 
They are “local” so its contents is different in each computer. 



Whatever data you leave in a NVMe must be eliminated as soon as the run that generated it 
finishes. NVMes cannot be used as storage units. 
Unless the /state/partitionXX has been assigned as our main storage unit, we usually only run 
jobs in /state/partitionXX if we know they do a lot of IO (Input-Output) operations (AKA: 
reading and writing lots of data from/to the disks) or they generate a huge amount of data, 
so if it is not the case, do not worry about it. We usually do it for running MD simulations 
that they are run as a batch of concatenated jobs. 
We prepare and keep all the files in the our main storage disk and in case we decide to run 
the job in /state/partitionN, we only move what we need to the /state/partition1 right before 
starting the job. If the input data is small, we usually don't move it. We usually do something 
like this: 
cd /state/partition1/myuser 
mkdir mynewjobdir 
cd mynewjobdir 
/home/myuser/myprogramdir/myprogram.sh /home/myuser/mydatadir/myinputdata 

the program generates the data in the current directory 
(/state/partition1/myuser/mynewjobdir) 
when it is done, we look at the data or maybe we run some analysis scripts and later or 
either we move the whole dir: 
mv /state/partition1/myuser/mynewjobdir /home/myuser/mydatadir/ 

or we just move the analysis results: 
mv /state/partition1/myuser/mynewjobdir/newjob_analysis /home/myuser/mydatadir/ 

 
For doing that, if it is a very repetitive process, we use scripts like  
state_partition1_example_job.sh (you can find it in the same place as this guide and has been 
copied at the end of this document for convenience) 
This script is a bit complex with some error control, most of the times we do not use the 
error control (lines from 10 to 32). You are welcome to use it if you want. 
This script has not been written by hand; in these cases, we usually create a larger script 
which oversees creating these ones. 
The use of scripts automatizes the process, so we don't have to worry for certain things like 
making mistakes creating directories an all of that, but it takes an extra effort, sometimes it 
is worth it and sometimes it is not, so we don't necessarily do it. 
What we actually do every time we have to run something in a remote computer that will 
take more than some minutes to finish is to use "terminal multiplexers": screen or tmux. If 
you do not know them, I strongly advise that you take a look to this page: 
http://linuxcommand.org/lc3_adv_termmux.php 
Using them will prevent losing your job if there is a network failure between your computer 
and the one you are using for running your job, and at the same time, you can get many 
"terminals" with only one ssh connection and many other features if you know how to use 
them. (IMPORTANT! execute tmux or screen in the running computer, eg: gin, orujo or stro)  
 
3.- The others 
They are virtual devices used by the Operative system to handle some operations, please 
ignore them. 
 
  



state_partition1_example_job.sh: 
 
#!/bin/bash 
 
RESULTDIR=/home/txino/GTA/GTAscript/V4/RUN/BLOUT 
JOBSDIR=/home/txino/GTA/GTAscript/V4/RUN/BLOUT/JOBS 
TJID=0224104558_089 
WJID=Sma00K279a..9..Smasm454-2lDM5j 
JOBNAME=Sma00K279a 
WORKDIR=/state/partition1/$USER/$WJID/$TJID/$JOBNAME 
 
function endscript 
{ 
    if ls ERR* 1>/dev/null 2>&1;then 
        touch ERROR 
        touch $JOBSDIR/$JOBNAME.ERROR 
    else 
        echo "NO ERROR FILE" 
        touch DONE 
        touch $JOBSDIR/$JOBNAME.DONE 
    fi 
     
    rm -f $JOBSDIR/$JOBNAME.RUNNING 
 
    cd $RESULTDIR 
    rsync --remove-source-files -av $WORKDIR $RESULTDIR/ && rm -rf $WORKDIR 
 
    rmdir /state/partition1/$USER/$WJID/$TJID 
    rmdir /state/partition1/$USER/$WJID 
    rmdir /state/partition1/$USER 
 
    date +%Y%m%d_%H%M%S 
    exit 
} 
 
if hostname -A >/dev/null 2>&1;then 
    hostname -A 
else 
    hostname 
fi 
 
date +%Y%m%d_%H%M%S 
mkdir -p $WORKDIR 
cd $WORKDIR || { touch ERR_cdworkdir; endscript; } 
pwd 
touch $JOBSDIR/$JOBNAME.RUNNING 
####  END HEADER ####### 
 
#### JOB CODE ########## 
 
 
/home/txino/GTA/GTAscript/V4/BLTOJSON/bltojson.pl 
/home/txino/GTA/GTAscript/V4/Sma00K279a..9..Smasm454-2lDM5j-rum_newblat-fst.fsgi.json Sma00K279a 
  
rc=$?; if [[ $rc != 0 ]] 
then 
    echo "ERROR: /home/txino/GTA/GTAscript/V4/BLTOJSON/bltojson.pl 
"/home/txino/GTA/GTAscript/V4/Sma00K279a..9..Smasm454-2lDM5j-rum_newblat-fst.fsgi.json Sma00K279a" 
exec error \$rc=$rc" 
    touch ERR_BLTJ 
fi 
 
 
#### END JOB CODE ###### 
 
####  START FOOTER ####### 
 
endscript 

 


